遥感高光谱笔记-高光谱遥感图像处理与信息提取

高光谱图像特征分析与提取

  • 高光谱去噪方法比较分析:利用仿真和真实数据定量评价了各经典方法,可知多元线性回归比空间信息更可靠
    在这里插入图片描述
    推荐使用右边三种方法
  • 基于低秩表示的图像降噪方法
    在这里插入图片描述
    将图像使用低秩表示的方法降低到低维空间,在使用基于特征的相似结构进行降噪处理,将降噪后的图像变为原始图像

三 高光谱图像混合像元分解(无人机高光谱存在的这类问题较少)

普遍存在混合像元现象,亚像元级地物信息提取款那

  • 由于空间分辨率的制约,高光谱图像中普遍存在混合像元,不同类型地物可能处在同一个像元中,光谱特征混杂严重,为确保地物信息提取的精度,需要建立精确的混合像元分解模型。
  • **解决方法:**提高高光谱数据的空间分辨率
    在这里插入图片描述

四、高光谱图像分类与目标探测

高光谱图像分裂

  • 高光谱图像分类是对给定的一组高光谱图像中的像元向量,根据其光谱和空间特征信息,采用一定的判别函数,对每一个像元向量分配一个唯一的标记,从而使它可以被某一种类别唯一表示。
    在这里插入图片描述
  • 理论上,波段数越多越利于地物分类,但是波段数量越多,带来的是需要样本数量越大,才能保证分类的精确度。高光谱数据的高纬度与有限训练样本之间矛盾所导致的问题
  • **空间信息利用不足的问题:**图像相同位置的分类一致性比较高,但是实际上在基于像素点分类的过程中,空间信息利用并不充分,把像素随机打乱也能实现分类。
    在这里插入图片描述
  • 解决方法:子空间支持向量机
    在这里插入图片描述
    在这里插入图片描述
    2020年论文参考方向,包含代码
    在这里插入图片描述

参考连接:

【图图Seminar17】高连如:高光谱遥感图像处理与信息提取
https://www.bilibili.com/video/BV1Si4y1M7TX/?spm_id_from=333.337.search-card.all.click
在这里插入图片描述
reference:https://www.bilibili.com/video/BV1Ea411h7gK/?spm_id_from=333.337.search-card.all.click&vd_source=c3d13bcea8d51bc2c00ccb4035532b79

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值