高光谱图像特征分析与提取
- 高光谱去噪方法比较分析:利用仿真和真实数据定量评价了各经典方法,可知多元线性回归比空间信息更可靠
推荐使用右边三种方法 - 基于低秩表示的图像降噪方法
将图像使用低秩表示的方法降低到低维空间,在使用基于特征的相似结构进行降噪处理,将降噪后的图像变为原始图像
三 高光谱图像混合像元分解(无人机高光谱存在的这类问题较少)
普遍存在混合像元现象,亚像元级地物信息提取款那
- 由于空间分辨率的制约,高光谱图像中普遍存在混合像元,不同类型地物可能处在同一个像元中,光谱特征混杂严重,为确保地物信息提取的精度,需要建立精确的混合像元分解模型。
- **解决方法:**提高高光谱数据的空间分辨率
四、高光谱图像分类与目标探测
高光谱图像分裂
- 高光谱图像分类是对给定的一组高光谱图像中的像元向量,根据其光谱和空间特征信息,采用一定的判别函数,对每一个像元向量分配一个唯一的标记,从而使它可以被某一种类别唯一表示。
- 理论上,波段数越多越利于地物分类,但是波段数量越多,带来的是需要样本数量越大,才能保证分类的精确度。高光谱数据的高纬度与有限训练样本之间矛盾所导致的问题
- **空间信息利用不足的问题:**图像相同位置的分类一致性比较高,但是实际上在基于像素点分类的过程中,空间信息利用并不充分,把像素随机打乱也能实现分类。
- 解决方法:子空间支持向量机
2020年论文参考方向,包含代码
参考连接:
【图图Seminar17】高连如:高光谱遥感图像处理与信息提取
https://www.bilibili.com/video/BV1Si4y1M7TX/?spm_id_from=333.337.search-card.all.click
reference:https://www.bilibili.com/video/BV1Ea411h7gK/?spm_id_from=333.337.search-card.all.click&vd_source=c3d13bcea8d51bc2c00ccb4035532b79