GB50202-2018 建筑地基工程施工质量验收标准 免费下载

【资源介绍】

资源名称:GB50202-2018 建筑地基工程施工质量验收标准

资源分类: 建筑工程规范标准

其他简介:GB50202-2018 建筑地基工程施工质量验收标准

【资源下载】

链接:https://pan.baidu.com/s/1zC7uhlcV2AOy0zZnx_4w9Q

提取码:gple

【资源截图】
在这里插入图片描述

【免责申明】

本站提供的资源下载链接均来自互联网,仅供学习研究之用,不得用于商业,请在24小时内删除!资源版权归原作者及其公司所有,如果你喜欢,请购买正版。

### 大型语言模型代理的实现与使用 大型语言模型(LLM)代理是一种能够利用预训练的语言模型来执行特定任务的应用程序接口或软件组件。通过这些代理,用户可以更方便地调用复杂的自然语言处理能力而无需深入了解底层技术细节。 #### 实现方式 为了创建有效的 LLM 代理,开发者通常会考虑以下几个方面: - **模块化设计**:将不同功能拆分为独立模块以便于维护和发展[^2]。 - **API 接口标准化**:提供统一的标准 API 来简化与其他系统的集成过程。 - **安全性考量**:确保数据传输的安全性和隐私保护措施到位。 对于具体的实现而言,《Personal_LLM_Agents_Survey》提到一些流行的框架和技术栈可以帮助加速开发进程并提高效率。例如,Hugging Face 的 Transformers 库提供了丰富的工具集用于加载和微调各种类型的预训练模型;LangChain 则专注于构建对话式的 AI 助手应用。 #### 使用方法 当涉及到如何实际操作 LLM 代理时,则需要注意以下几点: - **环境配置**:安装必要的依赖项以及设置运行环境是第一步工作。 - **参数调整**:根据具体应用场景的需求对输入参数进行适当修改以获得最佳性能表现。 - **测试验证**:在正式部署前进行全面的功能性测试是非常重要的环节之一,这有助于发现潜在问题并及时解决它们。 ```python from transformers import pipeline # 创建一个基于BERT的情感分析器实例 sentiment_analysis = pipeline('sentiment-analysis') result = sentiment_analysis("I love programming!") print(result) ``` 上述代码展示了怎样快速建立一个简单的 NLP 流水线来进行情感分类的任务。当然,在真实世界里可能还需要更多的准备工作才能让整个系统稳定可靠地运作起来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值