yolov5训练自己的数据集-----环境搭建,模型准备,训练

前言

本人主办公是轻薄本,之前训练都是借电脑,花700组装了台模型训练电脑,记录哈模型训练教程。

手把手带你用 YOLOv5 搭建一个属于自己的目标检测项目。

准备条件

安装 Anaconda 并熟悉基本命令:本项目主要基于 Conda 环境进行配置与管理

可以参考yolov5训练自己的数据集-----anaconda安装以及pycharm中环境配置-CSDN博客

一、下载源码

方法一:从官网直接下载(推荐)
打开 YOLOv5 的 GitHub 官方页面。

点击页面上的 “Code” 按钮,选择 “Download ZIP” 直接下载。

下载完后,建议将压缩包解压到 D 盘或 E 盘等非系统盘,以免因系统权限问题引发错误。

方法二:通过 Git 克隆源码(适合有基础的用户)
打开终端或命令提示符,输入以下命令将 YOLOv5 源码克隆到本地:

git clone https://github.com/ultralytics/yolov5

下载完成后,进入 yolov5 文件夹:

cd yolov5

增加一点:

安装git:

Git 详细安装教程(详解 Git 安装过程的每一个步骤)_git安装-CSDN博客

二、环境配置

1.本人使用pycharm激活

参考我另外一篇环境配置

yolov5训练自己的数据集-----anaconda安装以及pycharm中环境配置-CSDN博客

增加一个变动

用pycharm打开yolov5源码

2.配置Pytorch环境

YOLOv5可以在GPUCPU环境下运行,但推荐在GPU上运行以加快训练速度。

检查NVIDIA GPU及其CUDA支持情况

nvidia-smi是NVIDIA驱动自带的命令行工具,可以查看显卡的CUDA支持情况和驱动信息。打开命令提示符(或CMD),输入:

nvidia-smi

方式一:使用Conda安装(推荐)

  1. 打开 Previous PyTorch Versions | PyTorch 官网,选择<= CUDA Version 的Conda命令并复制(若不支持GPU则选择 CPU 的Conda命令)。

 

  1. 在终端中执行对应的安装命令,以安装PyTorch和CUDA / CPU支持。

  2. 安装完成后,可以在终端中输入conda list pytorch检查安装情况:(本教程仅展示CUDA版本的安装结果)

我使用方式1

方式二:使用Pip安装
打开 Previous PyTorch Versions | PyTorch 官网,选择<= CUDA Version 的Pip命令并复制(若不支持GPU则选择 CPU 的Pip命令)。


在终端中执行对应的安装命令,以安装PyTorch和CUDA / CPU支持。

安装完成后,可以在终端中输入pip list检查安装情况。

torch 2.3.0:核心库(版本2.3.0),用于构建和训练神经网络。
torchaudio 2.3.0:音频处理库(版本2.3.0),为音频数据的加载、预处理和增强提供了工具
torchvision 0.18.0:计算机视觉库(版本0.18.0),包含了常用的图像数据集、数据增强和预训练模型。
下载安装CUDA支持的torch + torchvision + torchaudio (仅GPU版本需要)。
打开网址 https://download.pytorch.org/whl/torch_stable.html
选择与上面对应版本的torch并下载至本地

cu121:表示此安装包支持 CUDA 12.1,也就是说,这个版本的 PyTorch 可以利用带有 CUDA 12.1 的 NVIDIA GPU 进行计算加速。
	
torch-2.3.0+cu121:说明这是 PyTorch 2.3.0 版本的安装包,并且这个版本支持 CUDA 12.1。在 PyTorch 中,不同 CUDA 版本对应不同的 GPU 支持,确保安装的 PyTorch 版本兼容设备的 CUDA 版本很重要。
	
cp38-cp38:表示该安装包是针对 Python 3.8(“cp38”代表 CPython 3.8)的版本。这里的 cp38-cp38 意味着此包适用于 Python 3.8 的 CPython 解释器(CPython 是 Python 的标准实现)。
	
win_amd64:表示该安装包适用于 Windows 操作系统,并支持 64位架构(AMD64)。如果您的系统是 Windows 64 位,这个包是兼容的。


在终端中输入以下命令以安装指定的 .whl 文件(请将路径替换为您下载的 .whl 文件的实际保存位置)
 

pip install D:\torch_gpu\torch-2.3.0+cu121-cp38-cp38-win_amd64.whl

torchvision与torchaudio安装方式同理
安装完毕后再次在终端中输入pip list检查安装情况,如果输出结果中显示类似以下内容,则表明安装成功

yolov5依赖安装

pip install -r requirements.txt -i  https://pypi.tuna.tsinghua.edu.cn/simple

 三、数据集准备

推荐一个我自己用的工具

https://www.makesense.ai/

Make Sense

点击右下角

点Drop images选择图片

选择object

这里可以自己建立标签(点击+就能创建)和导入标签(load labels)

导入标签

保存文件:

根据自己需要保存。我自己yolov5用xml,yolov8用了YOLO。

文件准备

  1. 在 yolov5 根目录下创建一个文件夹 VOCData

  2. 在 VOCData 文件夹内创建以下两个子文件夹,并存放数据:

    • images:存放待标注的图像文件(JPG格式)。
    • Annotations:存放标注后的文件(采用 XML 格式)。、
  3. VOCData/
    ├── images/         # 存放图像文件
    ├── Annotations/    # 存放标注文件
    

  4. 在 VOCData 目录下创建程序 split_train_val.py 并运行(划分训练集、验证集、测试集)

  5. # coding:utf-8
    
    # 本代表无需做任何修改,可直接运行
    import os
    import random
    import argparse
    
    parser = argparse.ArgumentParser()
    #xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
    parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
    #数据集的划分,地址选择自己数据下的ImageSets/Main
    parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
    opt = parser.parse_args()
    
    trainval_percent = 1.0  # 训练集和验证集所占比例。 这里没有划分测试集
    train_percent = 0.9     # 训练集所占比例,可自己进行调整
    xmlfilepath = opt.xml_path
    txtsavepath = opt.txt_path
    total_xml = os.listdir(xmlfilepath)
    if not os.path.exists(txtsavepath):
        os.makedirs(txtsavepath)
    
    num = len(total_xml)
    list_index = range(num)
    tv = int(num * trainval_percent)
    tr = int(tv * train_percent)
    trainval = random.sample(list_index, tv)
    train = random.sample(trainval, tr)
    
    file_trainval = open(txtsavepath + '/trainval.txt', 'w')
    file_test = open(txtsavepath + '/test.txt', 'w')
    file_train = open(txtsavepath + '/train.txt', 'w')
    file_val = open(txtsavepath + '/val.txt', 'w')
    
    for i in list_index:
        name = total_xml[i][:-4] + '\n'
        if i in trainval:
            file_trainval.write(name)
            if i in train:
                file_train.write(name)
            else:
                file_val.write(name)
        else:
            file_test.write(name)
    
    file_trainval.close()
    file_train.close()
    file_val.close()
    file_test.close()
    
    运行完成后,将生成 ImageSets/Main 文件夹,并在该文件夹下生成包含测试集、训练集和验证集的文本文件,用于存放各数据集中图片的文件名(不包含 `.jpg` 后缀)。
    
    由于默认未分配测试集,因此测试集文件为空。
    
    如需分配测试集,可通过修改代码中的第 14 和 15 行来调整数据集划分比例。
    

  6. 在 VOCData 目录下创建程序 xml_to_yolo.py 并运行(XML 格式转换为 YOLO 格式)
  7. # -*- coding: utf-8 -*-
    import xml.etree.ElementTree as ET
    import os
    from os import getcwd
    
    sets = ['train', 'val', 'test']
    classes = ["light", "post"]  # 改成您自定义数据集的类别
    abs_path = os.getcwd()
    print(abs_path)
    
    # 请将本代码中的所有绝对路径替换为您的本地路径
    
    def convert(size, box):
        dw = 1. / (size[0])
        dh = 1. / (size[1])
        x = (box[0] + box[1]) / 2.0 - 1
        y = (box[2] + box[3]) / 2.0 - 1
        w = box[1] - box[0]
        h = box[3] - box[2]
        x = x * dw
        w = w * dw
        y = y * dh
        h = h * dh
        return x, y, w, h
    
    
    def convert_annotation(image_id):
        in_file = open('D:/yolov5/VOCData/Annotations/%s.xml' % (image_id), encoding='UTF-8') # 需要修改
        out_file = open('D:/yolov5/VOCData/labels/%s.txt' % (image_id), 'w') # 需要修改
        tree = ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)
        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            # difficult = obj.find('Difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
                 float(xmlbox.find('ymax').text))
            b1, b2, b3, b4 = b
            if b2 > w:
                b2 = w
            if b4 > h:
                b4 = h
            b = (b1, b2, b3, b4)
            bb = convert((w, h), b)
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    
    
    wd = getcwd()
    for image_set in sets:
        if not os.path.exists('D:/yolov5/VOCData/labels/'): # 需要修改
            os.makedirs('D:/yolov5/VOCData/labels/') # 需要修改
        image_ids = open('D:/yolov5/VOCData/ImageSets/Main/%s.txt' % (image_set)).read().strip().split() # 需要修改
    
        if not os.path.exists('D:/yolov5/VOCData/dataSet_path/'): # 需要修改
            os.makedirs('D:/yolov5/VOCData/dataSet_path/') # 需要修改
    
        list_file = open('dataSet_path/%s.txt' % (image_set), 'w') # 这行路径不需更改,这是相对路径
        for image_id in image_ids:
            list_file.write('D:/yolov5/VOCData/images/%s.jpg\n' % (image_id)) # 需要修改
            convert_annotation(image_id)
        list_file.close()
    
    
    运行后将生成 labels 文件夹和 dataSet_path 文件夹:
    
    labels 文件夹中包含每个图像对应的标注文件。每个图像对应一个 .txt 文件,每行记录一个目标的信息,格式为 class, x_center, y_center, width, height,即 YOLO 格式。
    
    dataSet_path 文件夹包含三个数据集的 .txt 文件,例如 train.txt 文件包含训练集图像的路径,每行表示一个图像的位置路径。
    

  8. 在 yolov5 根目录下的 data 文件夹中创建一个名为 myvoc.yaml 的文件(准备配置文件)
  9. # 需要将下面两个绝对路径替换为您的本地路径
    train: D:/yolov5/VOCData/dataSet_path/train.txt
    val: D:/yolov5/VOCData/dataSet_path/val.txt
    
    # 您自定义数据集类别的数量
    nc: 2
    
    # 您自定义数据集的类别,注意这里的内容及顺序需要与xml_to_yolo.py代码中classes列表内容相同
    names: ["light", "post"]
    

  10. 在 yolov5 根目录下创建一个文件夹 weights ,打开 YOLOv5 官方 GitHub,下滑找到预训练权重,点击下载至 weights 文件夹(下载预训练权重)

weights/
├── yolov5n.pt        
├── yolov5s.pt   
├── yolov5m.pt   
├── ...   

 四、模型训练

pycharm打开train.py的433行

参数说明如下(注意epochs及device):

--weights:指定预训练模型权重文件的路径。
--cfg:模型配置文件的路径,定义网络结构。
--data:数据集配置文件的路径。
--epochs:训练的轮数,即模型将完整遍历数据集的次数(例如:200)。
--batch-size:批次大小,即每次训练中处理的图片数量(例如:8)。
--img:输入图像的尺寸,指定训练时图像的宽和高(例如:640)。
--device:指定使用的设备,输入 cpu 表示在 CPU 上进行训练;输入数字如 0, 1, 2, 3 则表示对应的 GPU 编号。例如:
--device 0 表示使用默认第一个 GPU;
--device 0,1 表示同时使用第一个和第二个 GPU(适合多 GPU 训练)。
当有多个 GPU 时,可以通过 nvidia-smi 命令查看每个 GPU 的编号

修改为:

点击运行,就开始训练了

训练完成后,训练结果会自动保存在runs/train/目录下。

五、验证测试

使用YOLOv5的detect.py脚本进行推理测试:

--weights:训练生成的模型权重路径。

--source 参数指定推理的输入源,支持以下几种格式:

单张图片:/path/to/image.jpg
文件夹(多张图片):/path/to/images/
视频文件:/path/to/video.mp4
摄像头:使用 0 表示默认摄像头
网络流:支持 RTSP/HTTP URL,例如 rtsp://username:password@ip_address:port

 运行后,YOLOv5会在runs/detect目录中保存带有预测框的图片,便于观察检测效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值