缓存雪崩
缓存雪崩指的是缓存层支撑不住或宕掉后, 流量会像奔逃的野牛一样, 打向后端存储层。
由于缓存层承载着大量请求, 有效地保护了存储层, 但是如果缓存层由于某些原因不能提供服务(比如超大并
发过来,缓存层支撑不住,或者由于缓存设计不好,类似大量请求访问bigkey,导致缓存能支撑的并发急剧下
降), 于是大量请求都会打到存储层, 存储层的调用量会暴增, 造成存储层也会级联宕机的情况。
预防和解决缓存雪崩问题, 可以从以下三个方面进行着手。
1) 保证缓存层服务高可用性,比如使用Redis Sentinel或Redis Cluster。
2) 依赖隔离组件为后端限流熔断并降级。比如使用Sentinel或Hystrix限流降级组件。
比如服务降级,我们可以针对不同的数据采取不同的处理方式。当业务应用访问的是非核心数据(例如电商商
品属性,用户信息等)时,暂时停止从缓存中查询这些数据,而是直接返回预定义的默认降级信息、空值或是
错误提示信息;当业务应用访问的是核心数据(例如电商商品库存)时,仍然允许查询缓存,如果缓存缺失,
也可以继续通过数据库读取。
3) 提前演练。 在项目上线前, 演练缓存层宕掉后, 应用以及后端的负载情况以及可能出现的问题, 在此基
础上做一些预案设定。
热点缓存key重建优化
图灵-诸葛老师
qq:3376224996
开发人员使用“缓存+过期时间”的策略既可以加速数据读写, 又保证数据的定期更新, 这种模式基本能够
满足绝大部分需求。 但是有两个问题如果同时出现, 可能就会对应用造成致命的危害:
当前key是一个热点key(例如一个热门的娱乐新闻),并发量非常大。
重建缓存不能在短时间完成, 可能是一个复杂计算, 例如复杂的SQL、 多次IO、 多个依赖等。
在缓存失效的瞬间, 有大量线程来重建缓存, 造成后端负载加大, 甚至可能会让应用崩溃。
要解决这个问题主要就是要避免大量线程同时重建缓存。
我们可以利用互斥锁来解决,此方法只允许一个线程重建缓存, 其他线程等待重建缓存的线程执行完, 重新
从缓存获取数据即可。
示例伪代码:
1
String
get
(
String key
) {
2
//
从
Redis
中获取数据
3
String value
=
redis
.
get
(
key
);
4
//
如果
value
为空, 则开始重构缓存
5
if
(
value
==
null
) {
6
//
只允许一个线程重建缓存, 使用
nx
, 并设置过期时间
ex
7
String mutexKey
=
"mutext:key:"
+
key
;
8
if
(
redis
.
set
(
mutexKey
,
"1"
,
"ex 180"
,
"nx"
)) {
9
//
从数据源获取数据
10
value
=
db
.
get
(
key
);
11
//
回写
Redis
, 并设置过期时间
12
redis
.
setex
(
key
,
timeout
,
value
);
13
//
删除
key_mutex
14
redis
.
delete
(
mutexKey
);
15
}
//
其他线程休息
50
毫秒后重试
16
else
{
17
Thread
.
sleep
(
50
);
18
get
(
key
);
19
}
20
}
21
return
value
;
22
}
缓存与数据库双写不一致
在大并发下,同时操作数据库与缓存会存在数据不一致性问题
1、双写不一致情况
解决方案:
1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等),这种几乎不用考虑这个问题,很少会发生
缓存不一致,可以给缓存数据加上过期时间,每隔一段时间触发读的主动更新即可。
2、就算并发很高,如果业务上能容忍短时间的缓存数据不一致(如商品名称,商品分类菜单等),缓存加上过期
时间依然可以解决大部分业务对于缓存的要求。
3、如果不能容忍缓存数据不一致,可以通过加
读写锁
保证并发读写或写写的时候按顺序排好队,
读读的时候
相当于无锁
。
4、也可以用阿里开源的canal通过监听数据库的binlog日志及时的去修改缓存,但是引入了新的中间件,增加
了系统的复杂度。
总结:
以上我们针对的都是
读多写少
的情况加入缓存提高性能,如果
写多读多
的情况又不能容忍缓存数据不一致,那
就没必要加缓存了,可以直接操作数据库。当然,如果数据库抗不住压力,还可以把缓存作为数据读写的主存
储,异步将数据同步到数据库,数据库只是作为数据的备份。
放入缓存的数据应该是对实时性、一致性要求不是很高的数据。切记不要为了用缓存,同时又要保证绝对的一
致性做大量的过度设计和控制,增加系统复杂性!
开发规范与性能优化
一、键值设计
1. key名设计
(1)【建议】: 可读性和可管理性
以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:id
1
trade
:
order
:
1
(2)【建议】:简洁性
保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视,例如:
1
user
:{
uid
}:
friends
:
messages
:{
mid
}
简化为
u
:{
uid
}:
fr
:
m
:{
mid
}
(3)【强制】:不要包含特殊字符
反例:包含空格、换行、单双引号以及其他转义字符
2. value设计
(1)【强制】:拒绝bigkey(防止网卡流量、慢查询)
在Redis中,一个字符串最大512MB,一个二级数据结构(例如hash、list、set、zset)可以存
储大约40亿个(2^32-1)个元素,但实际中如果下面两种情况,我就会认为它是bigkey。
1. 字符串类型:它的big体现在单个value值很大,一般认为超过10KB就是bigkey。
2. 非字符串类型:哈希、列表、集合、有序集合,它们的big体现在元素个数太多。
一般来说,string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。
反例:一个包含200万个元素的list。
非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注
意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,
造成阻塞)
bigkey的危害:
1.导致redis阻塞
2.网络拥塞
bigkey也就意味着每次获取要产生的网络流量较大,假设一个bigkey为1MB,客户端每秒访问
量为1000,那么每秒产生1000MB的流量,对于普通的千兆网卡(按照字节算是128MB/s)的服务
器来说简直是灭顶之灾,而且一般服务器会采用单机多实例的方式来部署,也就是说一个bigkey
可能会对其他实例也造成影响,其后果不堪设想。
3. 过期删除
有个bigkey,它安分守己(只执行简单的命令,例如hget、lpop、zscore等),但它设置了过
期时间,当它过期后,会被删除,如果没有使用Redis 4.0的过期异步删除(
lazyfree-lazy-expire yes
),就会存在阻塞Redis的可能性。
bigkey的产生:
一般来说,bigkey的产生都是由于程序设计不当,或者对于数据规模预料不清楚造成的,来看几
个例子:
(1) 社交类:粉丝列表,如果某些明星或者大v不精心设计下,必是bigkey。
(2) 统计类:例如按天存储某项功能或者网站的用户集合,除非没几个人用,否则必是bigkey。
(3) 缓存类:将数据从数据库load出来序列化放到Redis里,这个方式非常常用,但有两个地方
需要注意,第一,是不是有必要把所有字段都缓存;第二,有没有相关关联的数据,有的同学为
了图方便把相关数据都存一个key下,产生bigkey。
如何优化bigkey
1. 拆
big list: list1、list2、...listN
big hash:可以讲数据分段存储,比如一个大的key,假设存了1百万的用户数据,可以拆分成
200个key,每个key下面存放5000个用户数据
2. 如果bigkey不可避免,也要思考一下要不要每次把所有元素都取出来(例如有时候仅仅需要
hmget,而不是hgetall),删除也是一样,尽量使用优雅的方式来处理。
(2)【推荐】:选择适合的数据类型。
例如:实体类型(要合理控制和使用数据结构,但也要注意节省内存和性能之间的平衡)
反例:
1
set
user
:
1
:
name tom
2
set
user
:
1
:
age
19
3
set
user
:
1
:
favor football
正例:
1
hmset user
:
1
name tom age
19
favor football
3.【推荐】:控制key的生命周期,redis不是垃圾桶。
建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期)。
二、命令使用
1.【推荐】 O(N)命令关注N的数量
例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有
遍历的需求可以使用hscan、sscan、zscan代替。
2.【推荐】:禁用命令
禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的
方式渐进式处理。
3.【推荐】合理使用select
redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际
还是单线程处理,会有干扰。
4.【推荐】使用批量操作提高效率
1
原生命令:例如
mget
、
mset
。
2
非原生命令:可以使用
pipeline
提高效率。
但要注意控制一次批量操作的元素个数(例如500以内,实际也和元素字节数有关)。
注意两者不同:
1
1.
原生命令是原子操作,
pipeline
是非原子操作。
2
2.
pipeline
可以打包不同的命令,原生命令做不到
3
3.
pipeline
需要客户端和服务端同时支持。
5.【建议】Redis事务功能较弱,不建议过多使用,可以用lua替代