向量距离、随机变量相关性与概率分布的差异度量

向量距离度量


距离的定义:

在一个集合中,如果每一对元素均可唯一确定一个实数,使得三条距离公理(正定性,对称性,三角不等式)成立,则该实数可以称为这对元素之间的距离。

欧氏距离

定义在两个向量(两个点)上:点 x \mathbf{x} x和点 y \mathbf{y} y的欧氏距离为:

d E u c l i d e a n = ( x − y ) ⊤ ( x − y ) d_{Euclidean}=\sqrt{(\mathbf{x}-\mathbf{y})^\top (\mathbf{x}-\mathbf{y})} dEuclidean=(xy)(xy)

曼哈顿距离

Manhattan Distance(L1范数),也称为城市街区距离(City Block distance)。
定义在两个向量(两个点)上:点 x \mathbf{x} x和点 y \mathbf{y} y的曼哈顿距离为:

d M a n h a t t a n = ∣ x − y ∣ d_{Manhattan}=|\mathbf{x}-\mathbf{y}| dManhattan=xy

闵可夫斯基距离

Minkowski distance, 两个向量(点)的 p p p阶距离:

d M i n k o w s k i = ( ∣ x − y ∣ p ) 1 / p d_{Minkowski}=(|\mathbf{x}-\mathbf{y}|^p)^{1/p} dMinkowski=(xyp)1/p

p = 1 p=1 p=1时就是曼哈顿距离,当 p = 2 p=2 p=2时就是欧氏距离。

马氏距离

定义在两个向量(两个点)上,这两个点在同一个分布里。点 x \mathbf{x} x和点 y \mathbf{y} y的马氏距离为:

d M a h a l a n o b i s = ( x − y ) ⊤ Σ − 1 ( x − y ) d_{Mahalanobis}=\sqrt{(\mathbf{x}-\mathbf{y})^\top \Sigma^{-1} (\mathbf{x}-\mathbf{y})} dMahalanobis=(xy)Σ1(xy)

其中, Σ \Sigma Σ是这个分布的协方差, Cov ⁡ ( X , Y ) = E [ ( X − μ x ) ( Y − μ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值