向量距离度量
距离的定义:
在一个集合中,如果每一对元素均可唯一确定一个实数,使得三条距离公理(正定性,对称性,三角不等式)成立,则该实数可以称为这对元素之间的距离。
欧氏距离
定义在两个向量(两个点)上:点 x \mathbf{x} x和点 y \mathbf{y} y的欧氏距离为:
d E u c l i d e a n = ( x − y ) ⊤ ( x − y ) d_{Euclidean}=\sqrt{(\mathbf{x}-\mathbf{y})^\top (\mathbf{x}-\mathbf{y})} dEuclidean=(x−y)⊤(x−y)
曼哈顿距离
Manhattan Distance(L1范数),也称为城市街区距离(City Block distance)。
定义在两个向量(两个点)上:点 x \mathbf{x} x和点 y \mathbf{y} y的曼哈顿距离为:
d M a n h a t t a n = ∣ x − y ∣ d_{Manhattan}=|\mathbf{x}-\mathbf{y}| dManhattan=∣x−y∣
闵可夫斯基距离
Minkowski distance, 两个向量(点)的 p p p阶距离:
d M i n k o w s k i = ( ∣ x − y ∣ p ) 1 / p d_{Minkowski}=(|\mathbf{x}-\mathbf{y}|^p)^{1/p} dMinkowski=(∣x−y∣p)1/p
当 p = 1 p=1 p=1时就是曼哈顿距离,当 p = 2 p=2 p=2时就是欧氏距离。
马氏距离
定义在两个向量(两个点)上,这两个点在同一个分布里。点 x \mathbf{x} x和点 y \mathbf{y} y的马氏距离为:
d M a h a l a n o b i s = ( x − y ) ⊤ Σ − 1 ( x − y ) d_{Mahalanobis}=\sqrt{(\mathbf{x}-\mathbf{y})^\top \Sigma^{-1} (\mathbf{x}-\mathbf{y})} dMahalanobis=(x−y)⊤Σ−1(x−y)
其中, Σ \Sigma Σ是这个分布的协方差, Cov ( X , Y ) = E [ ( X − μ x ) ( Y − μ