卷积神经网络结构
卷积神经网络是多级神经网络,包含滤波级(filtering stage)与分类级(classification stage),其中,滤波级用来提取输入信号的特征,分类级对学习到的特征进行分类,两级网络参数是共同训练得到的。滤波级包含卷积层(convolutional layers),池化层(pooling layer)与激活层(activation layers)等3个基本单元,而分类级一般由全连接层组成。
卷积层
卷积层使用卷积核(Convolutional Kernels)对输入信号(或特征)的局部区域进行卷积运算,并产生相应的特征。卷积层最重要的特点是权值共享(Weights sharing),即同一个卷积核将以固定的步长(Stride)遍历一次输入。权值共享减少了卷积层的网络参数,避免了由于参数过多造成的过拟合,并且降低了系统所需内存。在实际操作中,大多使用相关运算(Correlation Operation)来替代卷积运算,这样可以避免反向传播时翻转卷积核。具体的卷积层运算如式:
一维卷积层的运算过程如图。
每个卷积核均遍历一次卷积层,同时进行卷积运算。以第一个卷积核为例,在进行卷积操作时,卷积核与被卷区域的神经元对应的系数相乘,得到第一个logits值y,然后以步长为1移动卷积核,重复之前的操作,直至卷积核遍历完输入信号的所有区域。
激活层
经过卷积操作之后,激活函数将对每一个卷积输出的logits值进行非线性变化。激活函数的目的,是将原本线性不可分的多维特征映射到另一空间,在此空间内,特征的线性可分性将增强。神经网络中常用的激活函数有Sigmoid函数,双曲正切函数Tanh以及修正线性单元ReLU(Rectified Linear Unit)。
当输入值的绝对值较大时,Sigmoid与Tanh函数的导数值均接近0,这会造成利用误差反向传播来更新权值时,随着神经网络层数的增加,误差值无法向下传播,从而底层网络训练不透,这也被称为梯度弥散现象。而ReLU函数在输入值大于0时的导数值始终为1,很好的克服了梯度弥散现象。
池化层
池化层进行的是降采样操作,主要目的是减少神经网络的参数。一维池化操作的示例如图。
图中输入层的特征宽度为6,深度为4,通过大小、步长为2的池化操作,将原始特征降采样到宽度为3,深度为4的输出特征。
常用的池化函数有均值池化(Average Pooling)与最大值池化(Max Pooling)。均值池化是将感知域的神经元的均值作为输出值,而最大值池化是将感知域中的最大值作为输出。
最大值池化的优点在于可以获得位置无关的特征,对于周期性的时域信号很关键。
全连接层
全连接层是将滤波级提取出的特征进行分类。具体做法为,先将最后一个池化层的输出,铺展成一维的特征向量,作为全连接层的输入;再将输入与输出之间进行全连接,如图所示。