入门数据分析最简单的途径就是去学习 Python 生态系统中,最流行也是最基础的库之一:Pandas,尤其对于从 Excel 转向 Python 的朋友来说,从效率到功能会发现很多惊喜。
为什么要使用 Python 这样的编程语言和 Pandas 这样的工具来处理数据呢?为了实现自动化和再现性。如果需要对多个数据集执行一组特定的分析,那么编程语言能自动分析这些数据集。
Pandas 能够完成许多任务,比如:
读/写不同格式的数据
选择数据的子集
跨行/列计算
寻找并填写缺失的数据
在数据的独立组中应用操作
重塑数据成不同格式
合并多个数据集
先进的时序功能
通过 matplotlib 和 seaborn 进行可视化操作
Pandas 提供的功能是相当全面的,通常是被用在数据采集和存储以及数据建模和预测中间的工具,更让人欣赏的一点是,Pandas 集成了众多功能却不臃肿,其中一个原因是它提供的是重要却简洁的功能。
同样因为 Pandas 库易于自学,且互联网给大家提供了资源上的极大便利,很多人都是边实践边学习,在解决问题过程中,遇到不会的问题,搜索一下就能瞬间找到问题的答案并获得满足感,因此也导致很多入门者的知识和技能也是碎片式的。但我们知道,系统的学习会让你在使用 Pandas 的时候更加高效。
今天就为大家推荐一本数据分析入门必读的宝藏级教科书——《Python数据分析:活用Pandas库》。
从入门到精通,从未如此简单
一书掌握工作中相见恨晚的 Pandas 使用技巧
01 #本书亮点#
手把手教学,涵盖Python数据分析的方方面面
Pandas 有很多高级的功能,但是想要掌握高级功能前,需要先掌握它的基础知识。本书在开篇细致讲解了Pandas的基础知识和常见用法,通过简单的实例展示了如何使用 Pandas 解决复杂的现实问题,以及如何利用 matplotlib、seaborn、statsmodels 和 sklearn 等库辅助进行 Python 数据分析,涵盖了数据处理、数据可视化、数据建模等内容。
据说精读此书,相当于系统学习了Python数据分析的入门课程。
小编在知乎上发现了一位图灵读者制作的本书结构图,很直观的展示出了书里所覆盖到的知识点,手把手讲解,方方面面都安排上了。
本图来源于图灵读者的知乎文章,原文地址 https://zhuanlan.zhihu.com/p/242181755
以实例阐释概念,实用性强
本书最大的特点就是每个概念都是通过简单实例来阐述的,小编选取了部分内容展示,大家可上下滑动查看。
讲解透彻,直击要点
本书原版和上市后中文版都得到了众多读者好评:
图文并茂,简洁易懂
用matplotlib绘制带颜色的散点图
seaborn计数图
使用seaborn的distplot方法绘图
seaborn KDE图
用seaborn的violinplot绘制小提琴图
☜左右滑动查看☞
02#本书作者#
丹尼尔·陈(Daniel Y. Chen)
Lander Analytics公司数据科学家,Software Carpentry和Data Carpentry的讲师和课程维护人员,DataCamp的课程讲师。目前他在弗尼吉亚理工大学社会与决策分析实验室从事政策决策数据分析。
03#大写的福利#
如果你对这本书很感兴趣的话,好消息来了~
文末留言说说你学数据分析时爬过的坑,我们将选出3名“被坑”最惨同学送出本书。
图 灵 社 群