P1443 马的遍历

题目描述

有一个 𝑛×𝑚n×m 的棋盘,在某个点 (𝑥,𝑦)(x,y) 上有一个马,要求你计算出马到达棋盘上任意一个点最少要走几步。

输入格式

输入只有一行四个整数,分别为 𝑛,𝑚,𝑥,𝑦n,m,x,y。

输出格式

一个 𝑛×𝑚n×m 的矩阵,代表马到达某个点最少要走几步(不能到达则输出 −1−1)。

输入输出样例

输入 #1复制

3 3 1 1

输出 #1复制

0    3    2    
3    -1   1    
2    1    4    

说明/提示

数据规模与约定

对于全部的测试点,保证 1≤𝑥≤𝑛≤4001≤x≤n≤400,1≤𝑦≤𝑚≤4001≤y≤m≤400。

思路

首先马所在的位置是不需要走的,所有为0;

而从零开始走,能到地方肯定为0 + 1;

而从0 + 1 地方走的 肯定是 在它的基础上在加一, 即 0 + 1 + 1;

很容易发现,这个是先看第一步 ,第一步完了才是第二步…………

这个是深度优先搜索(bfs)

 那这一题就简单了,先把点放进队列里面,通过先进先出的特性,来进行

代码

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N = 401;

int dx[] = {-1, -2, -2, -1, 1, 2, 2, 1};
int dy[] = {-2, -1, 1, 2, 2, 1, -1, -2};
int v[N][N];
int map[N][N];
int n, m;

void bfs(int x, int y){
	queue<pair<int,int> >q;
//	s.push(make_pair(x, y));//这个和q.push({x, y});都是一样的效果
	q.push({x, y});
	map[x][y] = 0;//马所在的位置为0;
	v[x][y] = 1;//标记是否到达
	while(!q.empty()){
		int xx = q.front().first;//x
		int yy = q.front().second;/y
		q.pop();//出队
		for (int i = 0; i < 8; i ++){
        //向外延伸的点x和y
			int x2 = xx + dx[i];
			int y2 = yy + dy[i];
			if (x2 > 0 && x2 <= n && y2 > 0 && y2 <= m && !v[x2][y2]){
				map[x2][y2] = map[xx][yy] + 1;//这个点等于上一个点加一
				v[x2][y2] = 1;//标记
				q.push({x2, y2});//入队
			}
		}
	}
}

int main(){
	int x, y;
	cin >> n >> m >> x >> y;
	memset(map, -1, sizeof map);
	memset(v, 0, sizeof v);
	bfs(x, y);
	for (int i = 1; i <= n; i ++){
		for (int j = 1; j <= m; j ++){
			cout << map[i][j] << " ";
		}
		cout << endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DsirNg

加油努力,千万不要放弃

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值