机器学习100天: Day1 数据预处理

本文介绍了'机器学习100天'教程的Day1内容,主要聚焦于数据预处理阶段,包括导入库、数据集、处理缺失值、分类数据的解析、创建虚拟变量以及数据集的拆分和特征量化等关键步骤。

今天看到了一个叫做"机器学习100天"的教程,可以作为复习之用。

项目地址:  https://github.com/Avik-Jain/100-Days-of-ML-Code-Chinese-Version

 

记录每天学习进度.

Day1: 数据预处理

第一步: 导入库

import numpy as np
import pandas as pd

第二步: 导入数据集

dataset = pd.read_csv('Data.csv')//读取csv文件
X = dataset.iloc[ : , :-1].values//.iloc[行,列]
Y = dataset.iloc[ : , 3].values  // : 全部行 or 列;[a]第a行 or 列
                                 // [a,b,c]第 a,b,c 行 or 列

第三步: 处理丢失数据

from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = "NaN", strat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值