自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 【Python 语法学习】两种列表初始化方式的区别

摘要: Python列表初始化有两种方式:1)列表推导式[0 for _ in range(num)]会创建独立对象,适合可变元素和动态计算;2)列表乘法[0]*num通过引用复制实现,对不可变对象更高效但存在共享引用风险。关键区别在于对象独立性(列表推导式每次新建对象,列表乘法复制引用)和性能(列表乘法快约18倍)。推荐场景:不可变对象用列表乘法,可变对象或需要动态计算时用列表推导式。特别注意多维列表初始化必须用推导式避免行共享问题,且小整数池优化可能影响id比较结果。

2025-08-15 00:33:09 1000

原创 【信号处理】卡尔曼滤波相关学习

卡尔曼滤波是一种基于贝叶斯估计的动态系统状态最优估计算法,通过融合系统模型预测和传感器观测数据实现最优估计。其核心在于预测-更新的闭环迭代机制:预测阶段利用系统模型推算当前状态,更新阶段通过卡尔曼增益动态平衡预测与观测的可靠性。该算法在自动驾驶、机器人定位等领域应用广泛,具有计算高效、噪声鲁棒性强等优势,但也存在线性假设限制、高斯假设偏差等局限。简化版的α-β-γ滤波器通过固定增益系数降低计算复杂度,适用于简单线性系统。理解卡尔曼滤波的数学本质及实现细节是工程应用的关键。

2025-07-23 14:24:45 1193

原创 【雷达信号处理】DDMA雷达技术

摘要:DDMA(多普勒分多址)是一种基于多普勒域分离的MIMO雷达技术,通过频移设计实现多天线信号并行处理,能显著提升角度分辨率和信噪比。相比传统TDMA雷达,DDMA具有全时发射、功率利用率高等优势,但最大无模糊速度范围有所缩减。其实现需结合硬件架构(如TI AWR2944芯片)和信号处理流程,包括距离维FFT、DDMA解调等步骤。DDMA在智能驾驶、大气监测等领域应用广泛,但仍面临速度模糊、多目标干扰等技术瓶颈,未来趋势是结合TDMA-DDMA混合波形优化性能。

2025-07-18 17:35:23 1240

原创 【雷达信号处理】快时间和慢时间

本文介绍了雷达信号处理中的快时间和慢时间概念。快时间用于距离测量,通过对单个脉冲回波的高采样率处理获得目标距离信息;慢时间用于速度测量,通过对多个脉冲回波的低采样率处理获取目标多普勒频移信息。文章详细阐述了两种时间维度的数学原理、关键参数和处理流程,并比较了它们的特性差异。

2025-07-17 17:18:54 1146

原创 【雷达信号处理】 Neyman-Pearson最优检测器和CFAR技术

本文系统介绍了Neyman-Pearson最优检测器和CFAR技术。Neyman-Pearson检测器基于似然比检验,在固定虚警概率下最大化检测概率,适用于雷达等信号检测场景。CFAR技术则通过动态调整检测阈值(如CA-CFAR、OS-CFAR等算法)来适应环境噪声变化,保持恒定虚警率。二者均为统计信号处理中的核心方法,分别从理论最优性和工程实用性角度解决了复杂环境下的目标检测问题。

2025-07-15 15:52:49 734

原创 【信号处理】克拉美-罗下界(Cramer-Rao Lower Bound,CRLB)及其与方差的关系

本文介绍了克拉美-罗下界(CRLB)的概念及其在信号处理中的应用。CRLB作为无偏估计量方差的理论下限,与费雪信息量成倒数关系。文章通过对比方差与CRLB的区别,阐明方差反映估计量的实际波动,而CRLB则设定理论最优精度。推导过程显示,费雪信息量通过取对数似然函数二阶导数的负期望获得,其数值越大代表参数估计的信息量越充分。文中还结合图像直观解释了二阶导数的负值与信息量的关系。

2025-07-14 15:45:59 1266

原创 【信号处理】最大似然估计量与最大似然估计值

本文主要介绍了最大似然估计的学习过程,重点区分了最大似然估计量与最大似然估计值的概念。最大似然估计量是样本的函数,作为随机变量表示参数估计的规则;而最大似然估计值是代入具体观测数据后得到的确定数值。二者在数学形式上一致,但本质不同:估计量强调理论推导,估计值侧重实际应用。文中通过符号对比(大写X表示随机变量,小写x表示具体值)和公式对比,清晰地阐明了二者的区别与联系,为后续理解克拉美-罗下界(CRLB)奠定了基础。

2025-07-10 16:53:10 755

原创 【信号处理】无偏估计

摘要:无偏估计指统计量期望值等于真实参数($E[\hat{\theta}]=\theta$),如样本均值是总体均值的无偏估计。关键案例显示样本方差需贝塞尔修正(分母n-1)才能无偏。虽然无偏性避免系统性偏差,但不等同估计精度,可能伴随高方差。实际应用中需权衡无偏性与其他准则(如均方误差)。典型应用包括通信信号处理中的参数估计,为克拉美-罗界等理论研究奠定基础。

2025-07-09 16:37:39 946

原创 【机器学习】决策边界与概率分布

本文介绍了机器学习分类问题中的两个核心概念:决策边界与概率分布。决策边界是用于区分类别的分界线(如逻辑回归中的线性边界),通过阈值(如0.5)将特征空间划分为不同类别区域。概率分布则反映模型对预测的确信度,通过sigmoid函数输出0-1间的连续概率值。作者结合车载雷达遮挡检测的实践,展示了二维特征空间中决策边界(黄线)与概率分布(颜色深浅)的可视化结果,并指出特征不足时边界附近的分类混淆问题。文章强调决策边界基于概率分布实现硬分类,而概率分布提供更细粒度的预测置信度。作为初学者笔记,作者欢迎指正。

2025-07-08 13:58:43 746

原创 【机器学习】 基础评价指标

摘要:本文介绍了机器学习分类任务中的基础评价指标。首先分析了准确率的定义与局限性,指出其在样本不平衡时的失效问题;接着详细讲解精确率与召回率的权衡关系,以及综合两者的F1分数;然后阐述了ROC曲线与AUC值的原理,强调其对类别不平衡的鲁棒性;最后对比了PR曲线与ROC曲线的适用场景。

2025-07-07 18:19:03 890

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除