前言:我是一名电子信息研0学生,未来研究方向是通感一体化,在学习克拉美-罗下界CRLB时,学习顺序是回顾了无偏估计与最大似然估计,然后再学习CRLB,最后结合论文去理解复数域的CRLB。上篇主要介绍了最大似然估计,前两篇的链接放在下面了,这篇主要介绍对克拉美-罗下界的学习。
【信号处理】无偏估计-CSDN博客
【信号处理】最大似然估计量与最大似然估计值-CSDN博客
一、概念与推导
在学习这一部分时,主要参考了以下几篇笔记:
统计信号估计 (一) 克拉美罗界CRLB和正则条件的理解(标量)-CSDN博客
估计理论2 克拉美劳下界(Cramer-Rao Lower Bound) - 知乎
统计信号处理-简单看看克拉美罗界 - rubbninja - 博客园
1. 基础定义
克拉美-罗下界(Cramer-Rao Lower Bound,CRLB)是一个衡量无偏估计器的有力工具。克拉美罗界 是Fisher 信息的倒数。任何无偏估计量
θ
^
\hat{\theta}
θ^ 的方差满足:
var
(
θ
^
)
≥
−
1
E
[
∂
2
ln
p
(
x
∣
θ
)
∂
θ
2
]
\text{var}(\hat{\theta}) \geq -\frac{1}{\mathbb{E}\left[\frac{\partial^2 \ln p(x|\theta)}{\partial \theta^2}\right]}
var(θ^)≥−E[∂θ2∂2lnp(x∣θ)]1
2. 相关推导
二、 克拉美罗界与方差
在统计学和信号处理领域,方差 (Variance) 和 克拉美罗界 (Cramér-Rao Bound, CRB) 是两个紧密相关但又截然不同的核心概念。简而言之,方差是衡量数据或估计量离散程度的“实际表现”,而克拉美罗界则是衡量一个理想的无偏估计量所能达到的“理论极限”。
1. 方差 :波动的度量
方差是统计学中最基本的概念之一,用于度量一组数据的分散程度。在参数估计问题中,我们通常会构造一个估计量 (estimator) 来估计未知的参数。由于观测数据本身存在随机性,这个估计量也是一个随机变量,其方差表示了估计结果围绕其均值的波动大小。
- 计算公式: 对于一个随机变量 X X X,其方差为 V a r ( X ) = E [ ( X − E [ X ] ) 2 ] Var(X) = E[(X - E[X])^2] Var(X)=E[(X−E[X])2]。
- 意义:
- 低方差:意味着多次估计的结果会非常接近,估计量比较稳定、可靠。
- 高方差:意味着估计结果波动很大,不够精确。
例如,我们多次测量一个物体的长度,得到的测量值会有波动。这些测量值的方差就反映了我们测量方法的不稳定性。
2. 克拉美罗界 :最优的标杆
克拉美罗界(更准确地说是克拉美罗下界,Cramér-Rao Lower Bound, CRLB)在参数估计理论中扮演着“裁判”的角色。它指出,对于一个试图估计确定性未知参数 θ \theta θ 的任何无偏估计量 θ ^ \hat{\theta} θ^,其方差不可能无限小,必定会大于或等于一个特定的值,这个值就是克拉美罗界。
- 核心不等式:
V
a
r
(
θ
^
)
≥
1
I
(
θ
)
Var(\hat{\theta}) \geq \frac{1}{I(\theta)}
Var(θ^)≥I(θ)1
其中, I ( θ ) I(\theta) I(θ) 是 费雪信息 (Fisher Information)。费雪信息衡量了观测数据 x x x 中包含的关于未知参数 θ \theta θ 的信息量。数据中关于参数的信息越多,费雪信息量越大,克拉美罗界就越低,意味着理论上可以达到的估计方差也越小。 - 意义:
- 性能基准:CRB为所有无偏估计量的方差设定了一个无法逾越的下限。它告诉我们,在给定的统计模型和数据下,我们所能达到的最佳估计精度是多少。
- 衡量估计量的“有效性”:如果一个无偏估计量的方差能够达到克拉美罗界,那么这个估计量就被称为有效估计量 (efficient estimator)或最小方差无偏估计量 (Minimum Variance Unbiased Estimator, MVUE)。这表明该估计量已经充分利用了数据中的所有信息,是理论上“最好”的无偏估计量。
3. 核心区别
特征 | 方差 (Variance) | 克拉美罗界 (Cramér-Rao Bound) |
---|---|---|
定义 | 一个随机变量或一组数据与其均值之差的平方的期望值。它描述了数据的离散程度。 | 对于任何无偏估计量,其方差所能达到的理论最小值。它是一个下界。 |
性质 | 描述性:是估计量或数据集的一个具体属性,可以被计算出来。 | 规定性:是一个理论上的界限,为所有无偏估计量的性能设定了一个标杆。 |
对象 | 适用于任何随机变量、数据集或估计量(无论有偏或无偏)。 | 专门针对无偏估计量 (unbiased estimator) 的方差。 |
目的 | 衡量一个估计结果的稳定性和一致性。方差越小,表示估计结果越集中。 | 评估一个无偏估计量的有效性 (efficiency)。判断一个估计量是否是“最好”的。 |
4. 两者联系
克拉美罗界与方差的直接联系在于:克拉美罗界是无偏估计量方差的一个下界。
我们可以将方差想象成一名跳高运动员的实际跳跃高度,而克拉美罗界则是根据物理定律和运动员身体素质计算出的理论上可能达到的最高高度。
- 任何一个无偏估计量的方差(实际表现)必然大于或等于克拉美罗界(理论极限)。
- 一个估计量的方差可以用来和CRB进行比较,以评估其性能。如果一个估计量的方差很接近CRB,我们就说它是一个性能很好的估计量。
- 在实际应用中,寻找一个能够达到CRB的估计量是许多研究工作的目标,例如在雷达、通信和图像处理等领域的定位和测速问题中,CRB常被用来评估算法的理论最优性能。
总而言之,方差是一个描述性的统计量,它告诉我们一个估计量本身的离散程度;而克拉美罗界是一个规定性的理论下限,它告诉我们所有无偏估计量在理论上所能达到的最佳性能是什么。二者的关系是:我们通过计算一个估计量的方差,并将其与克拉美罗界进行比较,来判断这个估计量在追求“最小方差”这一目标上表现得有多好。
三、Fisher信息取负号原因
信息量越大 ⟺ \iff ⟺ 山峰越尖锐 ⟺ \iff ⟺ 二阶导数的绝对值越大 ⟺ \iff ⟺ 二阶导数本身越负
我们希望定义的“费雪信息” I ( θ ) I(\theta) I(θ) 是一个正数,并且这个数值越大代表信息越多。而对数似然函数的二阶导数 ∂ 2 ∂ θ 2 ln L ( θ ∣ X ) \frac{\partial^2}{\partial \theta^2} \ln L(\theta|X) ∂θ2∂2lnL(θ∣X) 恰好是一个负数,且其绝对值与信息量成正比。
最自然的方法为通过在期望( E [ ⋅ ] E[\cdot] E[⋅])前加上一个负号,我们就成功地将一个衡量“山峰尖锐度”的负值,转化为了一个衡量“信息量”的正值。
这与二阶导数的正负也有关,当二阶导数为负时,函数图像在对应区间内是凸的(向下凹陷,形如拱形)。因此对应图像理解需要将引入一个负号。