494. Target Sum

You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

Find out how many ways to assign symbols to make sum of integers equal to target S.

Example 1:

Input: nums is [1, 1, 1, 1, 1], S is 3. 
Output: 5
Explanation: 

-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3

There are 5 ways to assign symbols to make the sum of nums be target 3.

Note:

  1. The length of the given array is positive and will not exceed 20.
  2. The sum of elements in the given array will not exceed 1000.
  3. Your output answer is guaranteed to be fitted in a 32-bit integer.

思路:

(1)暴力求法

       使用dfs,就是一个前序遍历二叉树的实现,递归地+或-每个元素,到所有元素都遍历完成的时候,最后那个判断target是否等于零。

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        return dfs(nums, S, 0);
    }

    int dfs(vector<int> &nums, uint target, int left) {
        if (target == 0 && left == nums.size()) return 1;
        if (left >= nums.size()) return 0;
        int ans = 0;
        ans += dfs(nums, target - nums[left], left + 1);
        ans += dfs(nums, target + nums[left], left + 1);
        return ans;
    }
};

(2)背包问题: 

      思路就是把整个集合看成两个子集,Q表示整个集合P表示正数子集N表示负数子集T表示目标和,用S(X)表示集合的求和函数,集合中均为非负数,N集合是指选中这部分元素作为负数子集。

                                                                     S(P) - S(N) = T

                                              S(P) + S(N) + S(P) - S(N) = T + S(P) + S(N)

                                                                              2S(P) = S(Q) + T
 

      也就是:正数集的和的两倍 == 等于目标和 + 序列总和

     所以问题就转换成了,找到一个正数集P,其和的两倍等于目标和+序列总和。。。

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        
        long sum = 0;
        for (const int &it : nums) sum += it;
        if ((S + sum) % 2 == 1 || S > sum) return 0;
        S = (S + sum) / 2;   //转化等效问题

        vector<int> dp(S+1,0);
        dp[0] =1;
        //背包问题求法
        for (const int &it : nums) {
            for (int j = S; j >= it; j--)
                dp[j] += dp[j - it];
        }
        return dp[S];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值