机器学习
tuzixini
这个作者很懒,什么都没留下…
展开
-
Fast-RCNN-阅读理解-笔记
论文:Fast R-CNN翻译:http://blog.csdn.net/qq_14839543/article/details/54425051 (这个翻译不是很好呢)理解参考:http://blog.csdn.net/shenxiaolu1984/article/details/51036677 http://blog.csdn.net/u011534057/article/detail原创 2017-12-08 10:50:17 · 341 阅读 · 0 评论 -
YOLO-论文笔记-理解
论文:https://arxiv.org/abs/1506.02640翻译: http://noahsnail.com/2017/08/02/2017-8-2-YOLO%E8%AE%BA%E6%96%87%E7%BF%BB%E8%AF%91%E2%80%94%E2%80%94%E4%B8%AD%E6%96%87%E7%89%88/理解参考: https://zhuanlan.zhihu...原创 2018-05-12 16:16:00 · 589 阅读 · 0 评论 -
中国大学MOOC-人工智能实践:Tensorflow笔记-课程笔记 Chapter4
本篇博客为学习中国大学MOOC-人工智能实践:Tensorflow笔记课程时的个人笔记记录。具体课程情况可以点击链接查看。(这里推一波中国大学MOOC,很好的学习平台,质量高,种类全,想要学习的话很有用的) 本篇是第四章的学习笔记,前三章的可以点击我阅读.Chapter 4 神经网络的优化4.1 损失函数神经元模型 激活函数(activation function)...原创 2018-05-12 09:36:02 · 1164 阅读 · 0 评论 -
中国大学MOOC-人工智能实践:Tensorflow笔记-课程笔记 Chapter1-3
本篇博客为学习中国大学MOOC-人工智能实践:Tensorflow笔记课程时的个人笔记记录。具体课程情况可以点击链接查看。(这里推一波中国大学MOOC,很好的学习平台,质量高,种类全,想要学习的话很有用的)Chapter 1 人工智能概述Chapter2 Python语法串讲Chapter3 Tensorflow框架3.1 张量 计算图 会话基本概念一些基本操作3.2 前...原创 2018-04-07 13:59:51 · 1213 阅读 · 0 评论 -
人脸对齐的两种方法-学习笔记
相关论文: Face Alignment In-the-Wild: A Survey Facial feature point detection: A comprehensive survey Face Alignment at 3000 FPS by Regressing Local Binary Features人脸对齐可以看作在一张人脸图像搜索人脸预先定义的点(也叫人脸形状)...原创 2018-03-03 17:11:16 · 3202 阅读 · 0 评论 -
Ubuntu16.04中CUDA的安装
由于学习需要在自己的电脑上面安装了Ubuntu16.04系统然后需要进行CUDA的安装. 首先需要有Anaconda环境,这里就不过多介绍这个的安装了. 我这里使用的是anaconda2,我的安装路径是/home/username/anaconda2/ 首先你需要给本机的英伟达显卡安装好相应的驱动, 然后你需要从英伟达的官网下载cuda8.0的安装包, 官网提供两种格式的安装包, 第一种原创 2018-01-10 16:13:19 · 1492 阅读 · 0 评论 -
PyTorch 入门-简单介绍
本篇博客的主要作用为用来记录自己的PyTorch学习过程,主要参考了简书用户”Zen_君”(传送门)的相关入门教程.PyTorch的官网:http://pytorch.org/ PyTorch中文文档:http://pytorch-cn.readthedocs.io/zh/latest/PyTorch的安装:https://www.jianshu.com/p/5ae644748f21Tensor张原创 2017-12-30 13:25:32 · 849 阅读 · 0 评论 -
CentOS 非管理员用户使用Anaconda配置pytorch-opencv-tensorflow环境
下载好相应的文件,一步步的执行如下命令就行:### python2.7-opencv-2.4.11-pytorch-0.2.0-tensorflow-gpu-base-1.3.00. chmod +x Anaconda2-5.0.0-Linux-x86_64.sh1. ./Anaconda2-5.0.0-Linux-x86_64.sh2. conda install opencv-2.4原创 2018-01-11 15:40:33 · 1164 阅读 · 0 评论 -
Linux 配置 深度学习环境常用的命令 pytorch-tensorflow-cuda-cudnn-nvcc
查看cuda 版本cat /usr/local/cuda/version.txt查看cudnn 版本cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2查看nvcc 版本nvcc -V原创 2018-01-11 14:06:00 · 681 阅读 · 0 评论 -
BDD100K-论文笔记-理解-BDD100K: A Diverse Driving Video Database eith Scalable Annotation Tooling
论文:BDD100K: A Diverse Driving Video Database eith Scalable Annotation Tooling数据集下载地址:BDD100K数据集翻译:理解参考:核心技术: UC Berkeley 发布了迄今为止规模最大、最多样化的开放驾驶视频数据集——BDD100K。该数据集共包含 10 万个视频,BAIR 研究者在视频上采样关键帧,...原创 2018-07-02 11:18:24 · 4728 阅读 · 20 评论 -
U-Net-论文笔记-理解:U-Net: Convolutional Networks for Biomedical Image Segmentation
论文:U-Net: Convolutional Networks for Biomedical Image SegmentationGitHub源码地址: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ https://github.com/zhixuhao/unet https://github.com/y...原创 2018-07-02 17:04:50 · 14604 阅读 · 1 评论 -
Dilated/Atrous Convolution
Dilated Convolution(或者叫做 Atrous Convolution), 中文称作 空洞卷积/带孔卷积/扩张卷积/膨胀卷积/多孔卷积.这些名称指的都是同一个意思,都是同一种操作.为什么需要空洞卷积在出现空洞卷积之前的CNN分割网络中,习惯于使用Pooling的方式降低图像的尺寸,同时增大网络的感受野.最后再使用Upsampling操作将图像的尺寸恢复到原始的大小,以得到像素...原创 2019-02-26 09:07:17 · 1780 阅读 · 0 评论 -
中国大学MOOC-人工智能实践:Tensorflow笔记-课程笔记 Chapter8 卷积网络实践
本篇博客为学习中国大学MOOC-人工智能实践:Tensorflow笔记课程时的个人笔记记录。具体课程情况可以点击链接查看。(这里推一波中国大学MOOC,很好的学习平台,质量高,种类全,想要学习的话很有用的)Chapter 8 卷积网络实践8.1 复现已有的卷积神经网络常用的一些函数x = tf.placeholder(tf.float32, shape=[BATCH_SIZE,...原创 2018-07-31 10:17:43 · 502 阅读 · 0 评论 -
中国大学MOOC-人工智能实践:Tensorflow笔记-课程笔记 Chapter5
学习中国大学MOOC-人工智能实践:Tensorflow笔记课程时的个人笔记记录。具体课程情况可以点击链接查看。(这里推一波中国大学MOOC,很好的学习平台,质量高,种类全,想要学习的话很有用的)** 本篇是第五章的学习笔记,第四章的可以点击我阅读. 前三章的可以点击我阅读.Chapter 5 全连接网络基础5.1 MNIST 数据集MNIST数据集: 6W张28*28的0~...原创 2018-07-21 11:13:33 · 923 阅读 · 1 评论 -
中国大学MOOC-人工智能实践:Tensorflow笔记-课程笔记 Chapter7 卷积网络基础
本篇博客为学习中国大学MOOC-人工智能实践:Tensorflow笔记课程时的个人笔记记录。具体课程情况可以点击链接查看。(这里推一波中国大学MOOC,很好的学习平台,质量高,种类全,想要学习的话很有用的) 本篇是第七章的学习笔记,前面的六章笔记可以翻看我的博客.Chapter 7 卷积网络基础7.1 卷积神经网络原始图片 -> 特征提取 ->全连接网络卷积可以认为是...原创 2018-07-24 18:14:58 · 585 阅读 · 0 评论 -
中国大学MOOC-人工智能实践:Tensorflow笔记-课程笔记 Chapter6
本篇博客为学习中国大学MOOC-人工智能实践:Tensorflow笔记课程时的个人笔记记录。具体课程情况可以点击链接查看。(这里推一波中国大学MOOC,很好的学习平台,质量高,种类全,想要学习的话很有用的) 本篇是第六章的学习笔记,前面五章的笔记可以翻看我的博客~Chapter 6 全连接网络实践关于上节课留下来的断点续训问题修改mnist_backward.py文件 修改...原创 2018-07-24 11:44:23 · 621 阅读 · 2 评论 -
论文笔记-理解-Attention Is All You Need
论文:Attention Is All You Need源码地址: 不是google的源码 https://github.com/bojone/attention/blob/master/attention_tf.py https://github.com/bojone/attention/blob/master/attention_keras.py论文翻译: https://ww...原创 2018-07-05 15:24:16 · 1009 阅读 · 0 评论 -
论文笔记-理解-Minimizing Supervision for Free-space Segmentation
论文:Minimizing Supervision for Free-space Segmentation源码地址:论文翻译:理解参考:核心技术: 本文提出了一种新的对图片进行自动标注的方法从而自动产生大量的标注数据用于训练分割网络. 这个方法使用的思路几乎是全新的,创新性十分高,从后面展示的结果来看,效果也非常好. 整个方法的流程如下图所示: 首先使用车辆在行驶的道路...原创 2018-07-04 10:58:59 · 1033 阅读 · 2 评论 -
SSD-论文笔记理解-Single Shot MultiBox Detector
论文:Single Shot MultiBox Detector源码地址: https://github.com/weiliu89/caffe/tree/ssd 论文翻译: https://blog.csdn.net/denghecsdn/article/details/77429978 https://blog.csdn.net/Ai_Smith/article/details/52...原创 2018-07-10 15:56:04 · 299 阅读 · 0 评论 -
CS231n-Assignment1(作业1)-softmax
[TOC] softmax这个比较简单,和之前的SVM基本差不多,只是用的公式不太一样罢了. 涉及到两个文件 第一个是根目录下的softmax.ipynb 第二个是/CS231n/classifier/softmax.pysoftmax.ipynbSoftmax exerciseComplete and hand in this completed worksheet (including原创 2017-11-26 23:37:47 · 2431 阅读 · 0 评论 -
CS231n-Assignment1(作业1)-SVM
说明知识储备svmipynbcs231nclassifierslinear_svmpycs231nclassifierslinear_classifierpy说明&知识储备这个作业涉及到的文件比较多,首先是根目录下的 svm.ipynb,然后是/cs231n/classifiers/linear_svm.py,/cs231n/classifiers/linear_classifier.py这原创 2017-11-26 10:43:02 · 2667 阅读 · 1 评论 -
AlexNet -翻译
AlexNet论文原文下载地址:http://download.csdn.net/download/tuzixini/10029304 AlexNet是在2012年被发表的一个金典之作,并在当年取得了ImageNet最好成绩,也是在那年之后,更多的更深的神经网路被提出,比如优秀的vgg,GoogleLeNet. 其官方提供的数据模型,准确率达到57.1%,top 1-5 达到80.2%. 这项对原创 2017-10-19 09:10:48 · 1026 阅读 · 0 评论 -
RCNN-阅读笔记-理解
R—CNN论文:Rich feature hierarchies for accurate object detection and semantic segmentation 论文翻译参考:http://blog.csdn.net/wangsidadehao/article/details/54237567 理解参考:http://blog.csdn.net/shenxiaolu1984/ar原创 2017-11-23 22:55:09 · 335 阅读 · 0 评论 -
GoogLeNet-阅读笔记-理解
GoogLeNet论文:Going deeper with convolutions 论文翻译: http://blog.csdn.net/Quincuntial/article/details/76457409?locationNum=7&fps=1 核心技术:Inception 减少了参数的数量,增加了网络的深度。 使用大量1x1卷积层,作为降维模块移除卷积瓶颈,允许在没有明显性能原创 2017-11-18 13:07:43 · 413 阅读 · 0 评论 -
Windows下Opencv-Python环境的配置
本文以作者在自己的电脑上实际安装配置Opencv-Python为例介绍Windows环境下的环境搭建。(Anaconda2+Opencv2.4.13+Windows10)准备的软件安装包1.Anaconda2 的Windows安装包。点击这里下载 请根据自己的系统以及需要的版本下载合适的安装包。2.Opencv的安装包。点击这里下载 请根据自己的系统以及需要的版本下载合适的安装包。3.x264v原创 2017-12-19 17:18:48 · 3841 阅读 · 0 评论 -
RFCN-阅读笔记-理解
论文: R-FCN: Object Detection via Region-based Fully Convolutional Networks翻译:http://blog.csdn.net/shadow_guo/article/details/51767036 (不精确,参考) http://blog.csdn.net/u012905422/article/details/53242183理解原创 2017-12-08 18:46:12 · 14653 阅读 · 5 评论 -
FCN-阅读笔记-理解
论文:Fully Convolutional Networks for semantic Segmentation翻译:https://www.cnblogs.com/xuanxufeng/p/6249834.html理解参考:https://www.cnblogs.com/gujianhan/p/6030639.html http://blog.csdn.net/u010678153/artic原创 2017-12-08 23:43:42 · 411 阅读 · 0 评论 -
DenseNet-阅读理解-笔记
论文:Densely Connected Convolutional Networks翻译:-.-理解参考:http://blog.csdn.net/u012938704/article/details/53468483 https://zhuanlan.zhihu.com/p/28859470 http://blog.csdn.net/u014380165/article/details/75原创 2017-12-08 17:01:36 · 1433 阅读 · 0 评论 -
Faster RCNN-阅读理解-笔记
论文:Faster-R-CNN-towards-real-time-object-detection-with-region-proposal-networks翻译:http://blog.csdn.net/u011534057/article/details/51259812理解参考:https://www.cnblogs.com/skyfsm/p/6806246.html http:...原创 2017-12-08 16:18:29 · 512 阅读 · 0 评论 -
AlexNet-阅读笔记-理解
论文:Imagenet classification with deep convolutional neural networks 理解参考:http://www.cnblogs.com/gongxijun/p/6027747.html http://blog.csdn.net/sunbaigui/article/details/39938097核心技术: 1.使用水平翻转,随机裁剪,平移变原创 2017-11-23 23:08:31 · 390 阅读 · 0 评论 -
VGG-阅读笔记-理解
论文翻译:http://blog.csdn.net/wspba/article/details/61625387 论文原文:https://arxiv.org/abs/1409.1556 参考理解:核心技术: 1.比AlexNet更加深的网络结构,D和E分别达到了16层和19层。 2.普遍使用较小的filter(3x3,1x1) 重要贡献:展示出网络的深度是算法优良性能的关键部分原创 2017-11-24 09:17:28 · 369 阅读 · 0 评论 -
CS231n-assignment1(作业1)-knn
Assignment1介绍页面:http://cs231n.github.io/assignments2017/assignment1/ [TOC]建议开始做作业前熟悉python的基本语法,以及jupyter notebook的基本使用方法,最好也熟悉numpy的API(不过也可以通过做作业学习这些东西) 完成KNN部分的作业需要补充两个文件中的代码缺失,分别是根目录下的knn.ipynb文件原创 2017-11-25 19:00:18 · 1139 阅读 · 0 评论 -
Mask R-CNN-论文笔记-理解
论文:Mask R-CNN论文翻译:http://blog.csdn.net/xiaqunfeng123/article/details/78716136理解参考:http://blog.csdn.net/zhangjunhit/article/details/64920075?locationNum=6&fps=1 http://blog.csdn.net/linolzhang/article/原创 2017-12-16 11:11:13 · 552 阅读 · 0 评论 -
ENet-论文笔记-理解
论文:ENet翻译:-.-理解参考:http://blog.csdn.net/zijinxuxu/article/details/67638290 http://blog.csdn.net/joshua_1988/article/details/52295302核心技术: 整个网络的结构如下: 其中initial的组成如下图中的a所示,bottleneck的组成如下图中的b所示. 对原创 2017-12-15 23:41:06 · 12417 阅读 · 0 评论 -
SegNet-论文笔记-理解
论文:SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling翻译:http://blog.csdn.net/u014451076/article/details/70741629理解参考:http://blog.csdn.net/fate_fjh/artic原创 2017-12-09 16:51:49 · 16912 阅读 · 2 评论 -
DBSCAN 论文笔记-理解
论文: 点击这里下载DBSCAN论文原文论文翻译:-.-理解参考:论文/算法的理解 https://www.cnblogs.com/pinard/p/6208966.html http://blog.csdn.net/Exupery_/article/details/76181272Python sklearn.cluster.DBSCAN的理解使用 http://scikit-learn原创 2017-12-23 09:58:05 · 4612 阅读 · 3 评论 -
Linux下ffmpeg的安装
ffmpeg是一个很强大的音视频处理工具,官网是:http://ffmpeg.org/ 官网介绍ffmpeg是:一个完整的、跨平台的解决方案,可以记录、转换和传输音频和视频。ffmpeg既可以播放视频,也提供命令行工具来处理视频,另外还有强大的视频处理库用于开发,下面是以Linux为例介绍ffmpeg的安装流程的简单的命令行对视频进行转码操作,是ffmpeg中最最简单的入门内容. ffmpe...原创 2017-11-27 00:29:05 · 7985 阅读 · 2 评论 -
ResNet-论文阅读理解-笔记
论文:Deep Residual Learning for Image Recognition论文原文:https://arxiv.org/abs/1512.03385论文翻译:http://www.jianshu.com/p/f71ba99157c7核心技术: 1.研究了普通网络在深度较深的时候的表现,发现反倒不如稍浅一些的网络(34层和18层比较,18层的效果比34层好),并且检验发现这并不是原创 2017-11-25 11:55:11 · 512 阅读 · 0 评论 -
SPPNet-阅读理解-笔记
论文:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition理解参考: http://blog.csdn.net/xjz18298268521/article/details/52681966创新点,核心技术: 1.使用空间金字塔池化(spatial pyramid pooling)使得结构确定的原创 2017-11-24 15:39:03 · 405 阅读 · 0 评论 -
UpPooling/UpSampling/Deconvolution/Transposed convolution
在图像的语义分割领域, 经常需要将分辨率较低的特征图通过某些方式将其恢复到原图分辨率. 这个时候很多的网络结构中使用UpPooling, UpSamping, Deconvolution 等操作进行恢复. 这几个操作之前还是有一些区别的, 这里做个笔记记录具体的区别情况.UpPooling(这里针对MaxPooling)可以看到UnPooling操作相当于在进行MaxPooling操作时候对...原创 2019-03-02 15:37:45 · 2277 阅读 · 3 评论