第1章 Spark 概述
1.1 Spark 是什么
Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。
- Spark 是一种由Scala 语言开发的快速、通用、可扩展的大数据分析引擎
- Spark Core 中提供了 Spark 最基础与最核心的功能
- Spark SQL 是Spark 用来操作结构化数据的组件。通过Spark SQL,用户可以使用SQL 或者Apache Hive 版本的 SQL 方言(HQL)来查询数据。
- Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的处理数据流的API。
1.2 Spark 核心模块
第2章 Spark 快速上手
2.1 创建 Maven 项目
2.1.1 Scala 插件
Settings->Plugins->Scala->Installed
2.1.2 依赖关系
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.0.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- 该插件用于将 Scala 代码编译成 class 文件 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<!-- 声明绑定到 maven 的 compile 阶段 -->
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.1.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
2.1.3 WordCount
// 创建 Spark 运行配置对象
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")
// 创建 Spark 上下文环境对象(连接对象)
val sc : SparkContext = new SparkContext(sparkConf)
// 读取文件数据
val fileRDD: RDD[String] = sc.textFile("input/word.txt")
// 将文件中的数据进行分词
val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )
// 转换数据结构 word => (word, 1)
val word2OneRDD: RDD[(String, Int)] = wordRDD.map((_,1))
// 将转换结构后的数据按照相同的单词进行分组聚合
val word2CountRDD: RDD[(String, Int)] = word2OneRDD.reduceByKey(_+_)
// 将数据聚合结果采集到内存中
val word2Count: Array[(String, Int)] = word2CountRDD.collect()
// 打印结果
word2Count.foreach(println)
//关闭 Spark 连接
sc.stop()
2.1.4 log4j.properties
项目的resources 目录中创建log4j.properties 文件,并添加日志配置信息:
log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd
HH:mm:ss} %p %c{1}: %m%n
# Set the default spark-shell log level to ERROR. When running the spark-shell,
the
# log level for this class is used to overwrite the root logger's log level, so
that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=ERROR
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=ERROR
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=ERROR
log4j.logger.org.apache.parquet=ERROR
log4j.logger.parquet=ERROR
# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent
UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
2.1.5 Run Configuration
第3章 Spark 运行环境
3.1 Local 模式
3.1.0 解压缩文件
将 spark-3.0.0-bin-hadoop3.2.tgz 文件上传到Linux 并解压缩,放置在指定位置
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-local
3.1.1 启动 Local 环境
进入解压缩后的路径,执行如下指令
bin/spark-shell
3.1.2 提交应用的语句
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[2] \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
- –class 表示要执行程序的主类,此处可以更换为咱们自己写的应用程序
- –master local[2] 部署模式,默认为本地模式,数字表示分配的虚拟CPU 核数量
- spark-examples_2.12-3.0.0.jar 运行的应用类所在的 jar 包,实际使用时,可以设定为自己打的jar 包
- 数字 10 表示程序的入口参数,用于设定当前应用的任务数量
3.2 Standalone 模式
Spark 的Standalone 模式体现了经典的master-slave 模式。
Linux1 | Linux2 | Linux3 | |
---|---|---|---|
Spark | Worker Master | Worker | Worker |
3.2.0 解压缩文件
将 spark-3.0.0-bin-hadoop3.2.tgz 文件上传到Linux 并解压缩在指定位置
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-standalone
3.2.1 修改配置文件
- 进入解压缩后路径的 conf 目录,修改slaves.template 文件名为slaves
mv slaves.template slaves
vim slaves
- 修改 slaves 文件,添加下列文本,也即添加work 节点
linux1
linux2
linux3
- 修改 spark-env.sh.template 文件名为spark-env.sh
mv spark-env.sh.template spark-env.sh
- 修改 spark-env.sh 文件,添加JAVA_HOME 环境变量和集群对应的 master 节点
export JAVA_HOME=/opt/module/jdk1.8.0_144
SPARK_MASTER_HOST=linux1
SPARK_MASTER_PORT=7077
- 分发 spark-standalone 目录
xsync spark-standalone
xsync 命令脚本见该博文:集群分发脚本
3.2.2 启动集群
- 执行脚本命令:
[root@hadoop102 spark-standalone]# sbin/start-all.sh
- 查看 Master 资源监控Web UI 界面: http://hadoop102:8080
3.2.3 提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
- –class 表示要执行程序的主类
- –master spark://linux1:7077 独立部署模式,连接到Spark 集群
- spark-examples_2.12-3.0.0.jar 运行类所在的jar 包
- 数字 10 表示程序的入口参数,用于设定当前应用的任务数量
3.2.4 提交参数说明
参数 | 解释 |
---|---|
–class | Spark 程序中包含主函数的类 |
–master | Spark 程序运行的模式(环境) |
–executor-memory 1G | 指定每个 executor 可用内存为1G |
–total-executor-cores 2 | 指定所有executor 使用的cpu 核数 |
–executor-cores | 指定每个executor 使用的cpu 核数 |
application-jar | 打包好的应用 jar,包含依赖。这个 URL 在集群中全局可见。 比如 hdfs:// 共享存储系统,如果是file:// path,那么所有的节点的path 都包含同样的 jar |
application-arguments | 传给 main()方法的参数 |
3.2.5 配置历史服务
- 修改 spark-defaults.conf.template 文件名为spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
- 修改 spark-default.conf 文件,配置日志存储路径
spark.eventLog.enabled true
spark.eventLog.dir hdfs://linux1:8020/directory
注意:需要启动hadoop 集群,HDFS 上的directory 目录需要提前存在。
sbin/start-dfs.sh
hadoop fs -mkdir /directory
- 修改 spark-env.sh 文件, 添加日志配置
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://linux1:8020/directory
-Dspark.history.retainedApplications=30"
- 参数 1 含义:WEB UI 访问的端口号为18080
- 参数 2 含义:指定历史服务器日志存储路径
- 参数 3 含义:指定保存Application 历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。
- 分发配置文件
xsync conf
- 重新启动集群和历史服务
sbin/start-all.sh
sbin/start-history-server.sh
- 重新执行任务
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
- 查看历史服务:http://hadoop102:18080
3.2.6 配置高可用(HA)
所谓的高可用是因为当前集群中的 Master 节点只有一个,所以会存在单点故障问题。
所以为了解决单点故障问题,需要在集群中配置多个 Master 节点,一旦处于活动状态的 Master发生故障时,由备用 Master 提供服务,保证作业可以继续执行。
高可用一般采用 Zookeeper 设置。
hadoop102 | hadoop103 | hadoop104 | |
---|---|---|---|
Spark | Master Zookeeper Worker | Master Zookeeper Worker | Zookeeper Worker |
- 停止集群
sbin/stop-all.sh
- 启动Zookeeper
- 修改 spark-env.sh 文件添加如下配置
注释如下内容:
#SPARK_MASTER_HOST=linux1
#SPARK_MASTER_PORT=7077
添加如下内容:
#Master 监控页面默认访问端口为 8080,但是可能会和 Zookeeper 冲突,所以改成 8989,也可以自定义,访问 UI 监控页面时请注意
SPARK_MASTER_WEBUI_PORT=8989
export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=linux1,linux2,linux3
-Dspark.deploy.zookeeper.dir=/spark"
- 分发配置文件
xsync conf/
- 启动集群
sbin/start-all.sh
- 启动 hadoop103的单独 Master 节点,此时hadoop103节点 Master 状态处于备用状态
[root@hadoop103 spark-standalone]# sbin/start-master.sh
- 提交应用到高可用集群
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077,hadoop103:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
- 查看 hadoop103 的 Master 资源监控Web UI,稍等一段时间后,hadoop103 节点的 Master 状态提升为活动状态
3.3 Yarn 模式
3.3.1 解压缩文件
将spark-3.0.0-bin-hadoop3.2.tgz 文件上传到linux 并解压缩,放置在指定位置。
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-yarn
3.3.2 修改配置文件
- 修改 hadoop 配置文件/opt/module/hadoop/etc/hadoop/yarn-site.xml, 并分发
<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认
是 true -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认
是 true -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
- 修改 conf/spark-env.sh,添加JAVA_HOME 和YARN_CONF_DIR 配置
mv spark-env.sh.template spark-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144
YARN_CONF_DIR=/opt/module/hadoop/etc/hadoop
3.3.3 启动 HDFS 以及 YARN 集群
3.3.4 提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
3.3.5 配置历史服务器
- 修改 spark-defaults.conf.template 文件名为spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
- 修改 spark-default.conf 文件,配置日志存储路径
spark.eventLog.enabled true
spark.eventLog.dir hdfs://linux1:8020/directory
注意:需要启动hadoop 集群,HDFS 上的目录需要提前存在。
[root@hadoop102 hadoop]# sbin/start-dfs.sh
[root@hadoop102 hadoop]# hadoop fs -mkdir /directory
- 修改 spark-env.sh 文件, 添加日志配置
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://linux1:8020/directory
-Dspark.history.retainedApplications=30"
- 参数 1 含义:WEB UI 访问的端口号为18080
- 参数 2 含义:指定历史服务器日志存储路径
- 参数 3 含义:指定保存Application 历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。
- 修改 spark-defaults.conf
spark.yarn.historyServer.address=linux1:18080
spark.history.ui.port=18080
- 启动历史服务
sbin/start-history-server.sh
- 重新提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
- Web 页面查看日志:http://hadoop103:8088
3.4 K8S & Mesos 模式
Mesos 是Apache 下的开源分布式资源管理框架,它被称为是分布式系统的内核。
容器化部署是目前业界很流行的一项技术,基于Docker 镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是Kubernetes(k8s)。
3.5 部署模式对比
模式 | Spark 安装机器数 | 需启动的进程 | 所属者 | 应用场景 |
---|---|---|---|---|
Local | 1 | 无 | Spark | 测试 |
Standalone | 3 | Master 及 Worker | Spark | 单独部署 |
Yarn | 1 | Yarn 及 HDFS | Hadoop | 混合部署 |
3.7 端口号
➢ Spark 查看当前Spark-shell 运行任务情况端口号:4040(计算)
➢ Spark Master 内部通信服务端口号:7077
➢ Standalone 模式下,Spark Master Web 端口号:8080(资源)
➢ Spark 历史服务器端口号:18080
➢ Hadoop YARN 任务运行情况查看端口号:8088
第4章 Spark 运行架构
4.1 运行架构
4.2 核心组件
4.2.1 Driver
Spark 驱动器节点,用于执行 Spark 任务中的 main 方法,负责实际代码的执行工作。
Driver 在Spark 作业执行时主要负责:
➢ 将用户程序转化为作业(job)
➢ 在 Executor 之间调度任务(task)
➢ 跟踪Executor 的执行情况
➢ 通过UI 展示查询运行情况
4.2.2 Executor
Spark Executor 是集群中工作节点(Worker)中的一个JVM 进程,负责在 Spark 作业中运行具体任务(Task),任务彼此之间相互独立。
Spark 应用启动时,Executor 节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有Executor 节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他Executor 节点上继续运行。
Executor 有两个核心功能:
➢ 负责运行组成Spark 应用的任务,并将结果返回给驱动器进程
➢ 它们通过自身的块管理器(Block Manager)为用户程序中要求缓存的 RDD 提供内存式存储。RDD 是直接缓存在 Executor 进程内的,因此任务可以在运行时充分利用缓存数据加速运算。
4.2.3 Master & Worker
Spark 集群的独立部署环境中,不需要依赖其他的资源调度框架,自身就实现了资源调度的功能,所以环境中还有其他两个核心组件:Master 和Worker。
Master 是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责,类似于Yarn 环境中的 RM;
Worker 也是一个进程,一个 Worker 运行在集群中的一台服务器上,由Master 分配资源对数据进行并行的处理和计算,类似于Yarn 环境中NM。
4.2.4 ApplicationMaster
Hadoop 用户向YARN 集群提交应用程序时,提交程序中应该包含ApplicationMaster,用
于向资源调度器申请执行任务的资源容器Container,运行用户自己的程序任务 job,监控整
个任务的执行,跟踪整个任务的状态,处理任务失败等异常情况。
说的简单点就是,ResourceManager(资源)和Driver(计算)之间的解耦合靠的就是
ApplicationMaster。
4.3 核心概念
4.3.1 Executor 与 Core
Spark Executor 是集群中运行在工作节点(Worker)中的一个JVM 进程,是整个集群中的专门用于计算的节点。在提交应用中,可以提供参数指定计算节点的个数,以及对应的资源。这里的资源一般指的是工作节点Executor 的内存大小和使用的虚拟CPU 核(Core)数
量。
应用程序相关启动参数如下:
名称 | 说明 |
---|---|
–num-executors | 配置 Executor 的数量 |
–executor-memory | 配置每个 Executor 的内存大小 |
–executor-cores | 配置每个 Executor 的虚拟 CPU core 数量 |
4.3.2 并行度(Parallelism)
在分布式计算框架中一般都是多个任务同时执行,由于任务分布在不同的计算节点进行计算,所以能够真正地实现多任务并行执行,记住,这里是并行,而不是并发。这里我们将整个集群并行执行任务的数量称之为并行度。那么一个作业到底并行度是多少呢?这个取决于框架的默认配置。应用程序也可以在运行过程中动态修改。
4.4 提交流程
4.4.1 Yarn Client 模式
Client 模式将用于监控和调度的Driver 模块在客户端执行,而不是在Yarn 中,所以一般用于测试。
➢ Driver 在任务提交的本地机器上运行
➢ Driver 启动后会和ResourceManager 通讯申请启动ApplicationMaster
➢ ResourceManager 分配container,在合适的NodeManager 上启动ApplicationMaster,负
责向ResourceManager 申请Executor 内存
➢ ResourceManager 接到ApplicationMaster 的资源申请后会分配 container,然后ApplicationMaster 在资源分配指定的NodeManager 上启动Executor 进程
➢ Executor 进程启动后会向Driver 反向注册,Executor 全部注册完成后Driver 开始执行main 函数
➢ 之后执行到Action 算子时,触发一个Job,并根据宽依赖开始划分 stage,每个stage 生成对应的TaskSet,之后将task 分发到各个Executor 上执行。
4.4.2 Yarn Cluster 模式
Cluster 模式将用于监控和调度的 Driver 模块启动在Yarn 集群资源中执行。一般应用于
实际生产环境。
➢ 在 YARN Cluster 模式下,任务提交后会和ResourceManager 通讯申请启动ApplicationMaster,
➢ 随后ResourceManager 分配container,在合适的NodeManager 上启动ApplicationMaster,此时的ApplicationMaster 就是Driver。
➢ Driver 启动后向ResourceManager 申请Executor 内存,ResourceManager 接到ApplicationMaster 的资源申请后会分配container,然后在合适的NodeManager 上启动Executor 进程
➢ Executor 进程启动后会向Driver 反向注册,Executor 全部注册完成后Driver 开始执行main 函数,
➢ 之后执行到Action 算子时,触发一个Job,并根据宽依赖开始划分 stage,每个stage 生成对应的TaskSet,之后将task 分发到各个Executor 上执行。
第5章 Spark 核心编程
Spark 计算框架为了能够进行高并发和高吞吐的数据处理,封装了三大数据结构,用于处理不同的应用场景。三大数据结构分别是:
数据结构 | 说明 |
---|---|
RDD | 弹性分布式数据集 |
累加器 | 分布式共享只写变量 |
广播变量 | 分布式共享只读变量 |
5.1 RDD
5.1.1 RDD 特性
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark 中最基本的数据处理模型。
➢ 弹性
- 存储的弹性:内存与磁盘的自动切换;
- 容错的弹性:数据丢失可以自动恢复;
- 计算的弹性:计算出错重试机制;
- 分片的弹性:可根据需要重新分片。
➢ 分布式:数据存储在大数据集群不同节点上
➢ 数据集:RDD 封装了计算逻辑,并不保存数据
➢ 数据抽象:RDD 是一个抽象类,需要子类具体实现
➢ 不可变:RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的RDD,在新的RDD 里面封装计算逻辑
➢ 可分区、并行计算
5.1.2 核心属性
➢ 分区列表
RDD 数据结构中存在分区列表,用于执行任务时并行计算,是实现分布式计算的重要属性。
getPartitions: Array[Partition]
➢ 分区计算函数
Spark 在计算时,是使用分区函数对每一个分区进行计算
compute(spilit: Partition, context: TaskContext): Iterator[T]
➢ RDD 之间的依赖关系
RDD 是计算模型的封装,当需求中需要将多个计算模型进行组合时,就需要将多个 RDD 建立依赖关系
getDependencies: Seq[Dependency[_]]=deps
➢ 分区器(可选)
当数据为KV 类型数据时,可以通过设定分区器自定义数据的分区
val partitioner: Option[Partitioner]=None
➢ 首选位置(可选)
计算数据时,可以根据计算节点的状态选择不同的节点位置进行计算
getPreferredLocations(split: Partition):Seq[String]=Nil
5.1.3 执行原理
在Yarn 环境中,RDD的工作原理:
-
启动Yarn 集群环境
-
Spark 通过申请资源创建调度节点和计算节点
-
Spark 框架根据需求将计算逻辑根据分区划分成不同的任务
-
调度节点将任务根据计算节点状态发送到对应的计算节点进行计算
5.1.4 基础编程
5.1.4.1 RDD 创建
- 从集合(内存)中创建 RDD
从集合中创建RDD,Spark 主要提供了两个方法:parallelize 和makeRDD
// spark配置:setMaster为local[*],setAppName为spark
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark")
// 创建SparkContext
val sparkContext = new SparkContext(sparkConf)
// parallelize 方法创建RDD
val rdd1 = sparkContext.parallelize(
List(1,2,3,4)
)
// makeRDD 方法创建RDD
val rdd2 = sparkContext.makeRDD(
List(1,2,3,4)
)
// 打印RDD
rdd1.collect().foreach(println)
rdd2.collect().foreach(println)
// sparkContext停止
sparkContext.stop()
从底层代码实现来讲,makeRDD 方法其实就是parallelize 方法
def makeRDD[T: ClassTag](seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
// 可看到在makeRDD函数体中调用了parallelize
parallelize(seq, numSlices)
}
- 从外部存储(文件)创建RDD
由外部存储系统的数据集创建RDD包括:
①本地的文件系统
②所有Hadoop 支持的数据集:比如HDFS、HBase 等。
// 同上
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark")
val sparkContext = new SparkContext(sparkConf)
// sparkContext.textFile("input") <= input.txt
val fileRDD: RDD[String] = sparkContext.textFile("input")
// 同上
fileRDD.collect().foreach(println)
sparkContext.stop()
-
从其他RDD 创建
主要是通过一个RDD 运算完后,再产生新的RDD。详情请参考后续章节 -
直接创建RDD(new)
使用new 的方式直接构造RDD,一般由Spark 框架自身使用。
5.1.4.2 RDD 并行度与分区
Spark 可以将一个作业切分多个任务后,发送给Executor 节点并行计算,而能够并行计算的任务数量我们称之为并行度。
这里的并行执行的任务数量,并不是指的切分任务的数量。
val dataRDD: RDD[Int] =
sparkContext.makeRDD(
List(1,2,3,4),
4) // 并行执行的任务数量为4
val fileRDD: RDD[String] =
sparkContext.textFile(
"input",
2) // 并行执行的任务数量为2
数据分区规则的Spark 核心源码如下:
def positions(length: Long, numSlices: Int): Iterator[(Int, Int)] = {
// 0< i <numSlices
(0 until numSlices).iterator.map { i =>
val start = ((i * length) / numSlices).toInt
val end = (((i + 1) * length) / numSlices).toInt
(start, end)
}
}
读取文件数据时,数据是按照Hadoop 文件读取的规则进行切片分区,而切片规则和数据读取的规则有些差异,具体 Spark 核心源码如下:
public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException {
// 计算总尺寸
long totalSize = 0;
// 检查是否有无效文件
for (FileStatus file: files) {
if (file.isDirectory()) {
throw new IOException("Not a file: "+ file.getPath());
}
totalSize += file.getLen();
}
// 若numSplits为0则goalSize设为totalSize,若不为0则拆分
long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);
// minSize
long minSize = Math.max(
job.getLong(org.apache.hadoop.mapreduce.lib.input.FileInputFormat.SPLIT_MINSIZE, 1)
, minSplitSize);
...
// 遍历文件
for (FileStatus file: files) {
...
// 文件是否可拆分
if (isSplitable(fs, path)) {
long blockSize = file.getBlockSize();
// 计算拆分后的尺寸
long splitSize = computeSplitSize(goalSize, minSize, blockSize);
...
} }
}
protected long computeSplitSize(long goalSize, long minSize,
long blockSize) {
return Math.max(minSize, Math.min(goalSize, blockSize));
}
5.1.4.3 RDD 转换算子
map
➢ 函数签名
def map[U: ClassTag](f: T => U): RDD[U]
➢ 函数说明
将处理的数据逐条进行映射转换
val dataRDD: RDD[Int] = sparkContext.makeRDD(List(1,2,3,4))
// 效果是所有数值*2,值的转换
val dataRDD1: RDD[Int] = dataRDD.map(
num => {
num * 2
}
)
// 效果是所有数值转为String类型,类型的转换
val dataRDD2: RDD[String] = dataRDD1.map(
num => {
"" + num
}
)
mapPartitions
➢ 函数签名
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]
val dataRDD1: RDD[Int] = dataRDD.mapPartitions(
// 筛选出==2的数据
datas => {
datas.filter(_==2)
}
)
角度 | Map | mapPartitions |
---|---|---|
数据处理 | 是分区内一个数据一个数据的执行,类似于串行操作。 | 是以分区为单位进行批处理操作。 |
功能 | 主要目的将数据源中的数据进行转换和改变,不会减少或增多数据。 | 需要传递一个迭代器,返回一个迭代器,没有要求的元素的个数保持不变,所以可以增加或减少数据 |
性能 | 性能比较低 | 类似于批处理,所以性能较高。但是会长时间占用内存,那么这样会导致内存可能不够用,出现内存溢出的错误。所以在内存有限的情况下,不推荐使用 |
mapPartitionsWithIndex
➢ 函数签名
def mapPartitionsWithIndex[U: ClassTag](
f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]
➢ 函数说明
将待处理的数据以分区为单位发送到计算节点进行处理,
这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。
val dataRDD1 = dataRDD.mapPartitionsWithIndex(
(index, datas) => {
datas.map(index, _)
}
)
flatMap
➢ 函数签名
def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]
➢ 函数说明
将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射
val dataRDD = sparkContext.makeRDD(List(List(1,2),List(3,4)),1)
val dataRDD1 = dataRDD.flatMap(
// 将List(List(1,2),List(3,4))进行扁平化操作
list => list
)
glom
➢ 函数签名
def glom(): RDD[Array[T]]
➢ 函数说明
将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变
val dataRDD = sparkContext.makeRDD(List( 1,2,3,4 ),1)
val dataRDD1:RDD[Array[Int]] = dataRDD.glom()
groupBy
➢ 函数签名
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]
➢ 函数说明
将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为shuffle。极限情况下,数据可能被分在同一个分区中一个组的数据在一个分区中,但是并不是说一个分区中只有一个组 。
val dataRDD = sparkContext.makeRDD(List(1,2,3,4),1)
// 1分到1,2分到0,3分到1,4分到0
val dataRDD1 = dataRDD.groupBy( _%2 )
filter
➢ 函数签名
def filter(f: T => Boolean): RDD[T]
➢ 函数说明
将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。
当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。
val dataRDD = sparkContext.makeRDD(List( 1,2,3,4 ),1)
// 筛出:2、4,因为_%2 == 0
val dataRDD1 = dataRDD.filter(_%2 == 0)
sample
➢ 函数签名
def sample(
// 为true时是抽取数据放回(泊松算法) ,为false时是抽取数据不放回(伯努利算法)
withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T]
➢ 参数说明
算法 | 是否放回 | 第一个参数 | 第二个参数 | 第三个参数 |
---|---|---|---|---|
伯努利算法 | N | false | 抽取的几率,范围在[0,1]之间,0:全不取;1:全取 | 随机数种子 |
泊松算法 | Y | true | 重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数 | 随机数种子 |
➢ 函数说明
根据指定的规则从数据集中抽取数据
val dataRDD = sparkContext.makeRDD(List( 1,2,3,4 ),1)
// 抽取数据不放回(伯努利算法)
// 伯努利算法:又叫 0、1 分布。例如扔硬币,要么正面,要么反面。
// 具体实现:根据种子和随机算法算出一个数和第二个参数设置几率比较,小于第二个参数要,大于不要
val dataRDD1 = dataRDD.sample(false, 0.5)
// 抽取数据放回(泊松算法)
val dataRDD2 = dataRDD.sample(true, 2)
distinct
➢ 函数签名
// 没有传入参数的,无参distinct()中又调用了带参数的distinct(partitions.length)
def distinct()(implicit ord: Ordering[T] = null): RDD[T]
// 有传入参数numPartitions的
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
➢ 函数说明
将数据集中重复的数据去重
val dataRDD = sparkContext.makeRDD(List( 1,2,3,4,1,2 ),1)
val dataRDD1 = dataRDD.distinct()
val dataRDD2 = dataRDD.distinct(2)
➢ 原理
- 使用map算子把元素转为一个带有null的元组;
- 使用reducebykey对具有相同key的元素进行统计;
- 再使用map算子,取得元组中的单词元素,实现去重。
coalesce
➢ 函数签名
def coalesce(
numPartitions: Int,
shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null) : RDD[T]
➢ 函数说明
根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率
当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本
val dataRDD = sparkContext.makeRDD(List( 1,2,3,4,1,2 ),6)
// 收缩合并分区
val dataRDD1 = dataRDD.coalesce(2)
repartition
➢ 函数签名
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
➢ 函数说明
该操作内部其实执行的是 coalesce 操作,参数shuffle 的默认值为true。
无论是将分区数多的 RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的RDD,repartition操作都可以完成,因为无论如何都会经 shuffle 过程。
val dataRDD = sparkContext.makeRDD(List(
1,2,3,4,1,2
),2)
// 分区数少的 RDD 转换为分区数多的RDD
val dataRDD1 = dataRDD.repartition(4)
sortBy
➢ 函数签名
def sortBy[K](
f: (T) => K,
ascending: Boolean = true,
numPartitions: Int = this.partitions.length)
(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]
➢ 函数说明
该操作用于排序数据。
- 在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。
- 排序后新产生的 RDD 的分区数与原RDD 的分区数一致。
- 中间存在shuffle 的过程
val dataRDD = sparkContext.makeRDD(List( 1,2,3,4,1,2 ),2)
val dataRDD1 = dataRDD.sortBy(num=>num, false, 4)
intersection
➢ 函数签名
def intersection(other: RDD[T]): RDD[T]
➢ 函数说明
对源RDD 和参数RDD 求交集后返回一个新的RDD
val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
// A.intersection(B)
val dataRDD = dataRDD1.intersection(dataRDD2)
union
➢ 函数签名
def union(other: RDD[T]): RDD[T]
➢ 函数说明
对源RDD 和参数RDD 求并集后返回一个新的RDD
val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
// A.union(B)
val dataRDD = dataRDD1.union(dataRDD2)
subtract
➢ 函数签名
def subtract(other: RDD[T]): RDD[T]
➢ 函数说明
以一个RDD 元素为主,去除两个RDD 中重复元素,将其他元素保留下来。求差集
val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
// A.subtract(B)
val dataRDD = dataRDD1.subtract(dataRDD2)
zip
➢ 函数签名
def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)]
➢ 函数说明
将两个RDD 中的元素,以键值对的形式进行合并。
其中,键值对中的 Key 为第 1 个RDD中的元素,Value 为第 2 个RDD 中的相同位置的元素。
val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
// key.zip(value)
val dataRDD = dataRDD1.zip(dataRDD2)
reduceByKey
➢ 函数签名
无参版和有参版
def reduceByKey(func: (V, V) => V): RDD[(K, V)]
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]
➢ 函数说明
可以将数据按照相同的Key 对Value 进行聚合
val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.reduceByKey(_+_)
val dataRDD3 = dataRDD1.reduceByKey(_+_, 2)
groupByKey
➢ 函数签名
def groupByKey(): RDD[(K, Iterable[V])]
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]
➢ 函数说明
将数据源的数据根据 key 对 value 进行分组
val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.groupByKey()
val dataRDD3 = dataRDD1.groupByKey(2)
val dataRDD4 = dataRDD1.groupByKey(new HashPartitioner(2))
reduceByKey 和 groupByKey 区别
角度 | reduceByKey | groupByKey |
---|---|---|
shuffle | reduceByKey可以在shuffle 前对分区内相同 key 的数据进行预聚合功能,这样会减少落盘的数据量,reduceByKey 性能比较高。 | groupByKey 只是进行分组,不存在数据量减少的问题。 |
功能 | reduceByKey 其实包含分组和聚合的功能,所以在分组聚合的场合下,推荐使用reduceByKey。 | GroupByKey 只能分组,不能聚合,如果仅仅是分组而不需要聚合。那么还是只能使用groupByKey |
aggregateByKey
➢ 函数签名
def aggregateByKey[U: ClassTag](zeroValue: U)
(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)]
➢ 函数说明
将数据根据不同的规则进行分区内计算和分区间计算
val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.aggregateByKey(0)(_+_,_+_)
foldByKey
➢ 函数签名
def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]
➢ 函数说明
当分区内计算规则和分区间计算规则相同时,aggregateByKey 就可以简化为foldByKey
val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.foldByKey(0)(_+_)
combineByKey
➢ 函数签名
def combineByKey[C](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C): RDD[(K, C)]
➢ 函数说明
最通用的对 key-value 型 rdd 进行聚集操作的聚集函数(aggregation function)。
类似于aggregate(),combineByKey()允许用户返回值的类型与输入不一致。
val list: List[(String, Int)] = List(
("a", 88), ("b", 95),
("a", 91), ("b", 93),
("a", 95), ("b", 98))
val input: RDD[(String, Int)] = sc.makeRDD(list, 2)
val combineRdd: RDD[(String, (Int, Int))] = input.combineByKey(
(_, 1),
(acc: (Int, Int), v) => (acc._1 + v, acc._2 + 1),
(acc1: (Int, Int), acc2: (Int, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2)
)
sortByKey
➢ 函数签名
def sortByKey(
ascending: Boolean = true,
numPartitions: Int = self.partitions.length): RDD[(K, V)]
➢ 函数说明
在一个 (K,V) 的 RDD 上调用,K 必须实现 Ordered 接口(特质),返回按照 key 进行排序的
val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val sortRDD1: RDD[(String, Int)] = dataRDD1.sortByKey(true)
val sortRDD1: RDD[(String, Int)] = dataRDD1.sortByKey(false)
join
➢ 函数签名
def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]
➢ 函数说明
在类型为 (K,V) 和 (K,W) 的RDD 上调用,
返回一个相同 key 对应的所有元素连接在一起的 (K,(V,W)) 的 RDD
val rdd: RDD[(Int, String)] = sc.makeRDD(Array((1, "a"), (2, "b"), (3, "c")))
val rdd1: RDD[(Int, Int)] = sc.makeRDD(Array((1, 4), (2, 5), (3, 6)))
rdd.join(rdd1).collect().foreach(println)
leftOuterJoin
➢ 函数签名
def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]
➢ 函数说明
类似于SQL 语句的左外连接
val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val rdd: RDD[(String, (Int, Option[Int]))] = dataRDD1.leftOuterJoin(dataRDD2)
cogroup
➢ 函数签名
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]
➢ 函数说明
在类型为(K,V)和(K,W)的RDD 上调用,返回一个(K,(Iterable,Iterable))类型的RDD
val dataRDD1 = sparkContext.makeRDD(List(("a",1),("a",2),("c",3)))
val dataRDD2 = sparkContext.makeRDD(List(("a",1),("c",2),("c",3)))
val value: RDD[(String, (Iterable[Int], Iterable[Int]))] =
dataRDD1.cogroup(dataRDD2)
5.1.4.5 RDD 行动算子
reduce
➢ 函数签名
def reduce(f: (T, T) => T): T
➢ 函数说明
聚集RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 聚合数据
val reduceResult: Int = rdd.reduce(_+_)
collect
➢ 函数签名
def collect(): Array[T]
➢ 函数说明
在驱动程序中,以数组Array 的形式返回数据集的所有元素
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 收集数据到 Driver
rdd.collect().foreach(println)
count
➢ 函数签名
def count(): Long
➢ 函数说明
返回 RDD 中元素的个数
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val countResult: Long = rdd.count()
first
➢ 函数签名
def first(): T
➢ 函数说明
返回RDD 中的第一个元素
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val firstResult: Int = rdd.first()
println(firstResult)
take
➢ 函数签名
def take(num: Int): Array[T]
➢ 函数说明
返回一个由 RDD 的前 n 个元素组成的数组
vval rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val takeResult: Array[Int] = rdd.take(2)
println(takeResult.mkString(","))
takeOrdered
➢ 函数签名
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
➢ 函数说明
返回该 RDD 排序后的前 n 个元素组成的数组
val rdd: RDD[Int] = sc.makeRDD(List(1,3,2,4))
// 返回 RDD 排序后的前 2 个元素组成的数组
val result: Array[Int] = rdd.takeOrdered(2)
aggregate
➢ 函数签名
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
➢ 函数说明
分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4), 8)
// 将该 RDD 所有元素相加得到结果
//val result: Int = rdd.aggregate(0)(_ + _, _ + _)
val result: Int = rdd.aggregate(10)(_ + _, _ + _)
fold
➢ 函数签名
def fold(zeroValue: T)(op: (T, T) => T): T
➢ 函数说明
折叠操作,aggregate 的简化版操作
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
val foldResult: Int = rdd.fold(0)(_+_)
countByKey
➢ 函数签名
def countByKey(): Map[K, Long]
➢ 函数说明
统计每种key 的个数
val rdd: RDD[(Int, String)] = sc.makeRDD(List(
(1, "a"), (1, "a"),
(1, "a"), (2, "b"),
(3, "c"), (3, "c")))
// 统计每种 key 的个数
val result: collection.Map[Int, Long] = rdd.countByKey()
save 相关算子
➢ 函数签名
def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
def saveAsSequenceFile(
path: String,
codec: Option[Class[_ <: CompressionCodec]] = None): Unit
➢ 函数说明
将数据保存到不同格式的文件中
// 保存成 Text 文件
rdd.saveAsTextFile("output")
// 序列化成对象保存到文件
rdd.saveAsObjectFile("output1")
// 保存成 Sequencefile 文件
rdd.map((_,1)).saveAsSequenceFile("output2")
foreach
➢ 函数签名
def foreach(f: T => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
➢ 函数说明
分布式遍历RDD 中的每一个元素,调用指定函数
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 收集后打印
rdd.map(num=>num).collect().foreach(println)
println("****************")
// 分布式打印
rdd.foreach(println)
5.1.4.6 RDD 序列化
- 闭包检查
从计算的角度, 算子以外的代码都是在Driver 端执行, 算子里面的代码都是在 Executor端执行。
导致算子内经常会用到算子外的数据,这样就形成了闭包的效果,如果使用的算子外的数据无法序列化,就意味着无法传值给Executor端执行,就会发生错误,所以需要在执行任务计算前,检测闭包内的对象是否可以进行序列化 - Kryo 序列化框架
参考地址: https://github.com/EsotericSoftware/kryo
Kryo 速度是Serializable 的10 倍。当 RDD 在Shuffle 数据的时候,简单数据类型、数组和字符串类型已经在Spark 内部使用 Kryo 来序列化。
**注意:即使使用Kryo 序列化,也要继承Serializable 接口。 **
val conf: SparkConf = new SparkConf()
.setAppName("SerDemo")
.setMaster("local[*]")
// 替换默认的序列化机制
.set("spark.serializer",
"org.apache.spark.serializer.KryoSerializer")
// 注册需要使用 kryo 序列化的自定义类
.registerKryoClasses(Array(classOf[Searcher]))
5.1.4.7 RDD 依赖关系
- RDD 血缘关系
RDD 只支持粗粒度转换,即在大量记录上执行的单个操作。将创建 RDD 的一系列Lineage(血统)记录下来,以便恢复丢失的分区。RDD 的Lineage 会记录RDD 的元数据信息和转换行为,当该RDD 的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
(RDD[String]).toDebugString
- RDD 依赖关系
所谓的依赖关系,其实就是两个相邻RDD 之间的关系
(RDD[String]).dependencies
依赖 | RDD 窄依赖 | RDD 宽依赖 |
---|---|---|
定义 | 表示每一个父RDD的Partition最多被子RDD的一个Partition 使用 | 宽依赖表示同一个父RDD的Partition被多个子RDD的Partition 依赖,会引起Shuffle |
- RDD 阶段划分源码
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
// 调用创建stage函数
finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
……
private def createResultStage(
rdd: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
jobId: Int,
callSite: CallSite): ResultStage = {
// 获取或创建父Stage
val parents = getOrCreateParentStages(rdd, jobId)
// 获取或自增Id
val id = nextStageId.getAndIncrement()
// new ResultStage类
val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
stageIdToStage(id) = stage
updateJobIdStageIdMaps(jobId, stage)
stage
}
……
// 获取或创建父Stage函数
private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage]
= {
// 获取Shuffle依赖
getShuffleDependencies(rdd).map { shuffleDep =>
getOrCreateShuffleMapStage(shuffleDep, firstJobId)
}.toList
}
……
private[scheduler] def getShuffleDependencies(
rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
val parents = new HashSet[ShuffleDependency[_, _, _]]
val visited = new HashSet[RDD[_]]
val waitingForVisit = new Stack[RDD[_]]
waitingForVisit.push(rdd)
while (waitingForVisit.nonEmpty) {
val toVisit = waitingForVisit.pop()
if (!visited(toVisit)) {
visited += toVisit
toVisit.dependencies.foreach {
case shuffleDep: ShuffleDependency[_, _, _] =>
parents += shuffleDep
case dependency =>
waitingForVisit.push(dependency.rdd)
}
}
}
parents
}
- RDD 任务划分
RDD 任务切分中间分为:Application、Job、Stage 和 Task
- Application:初始化一个 SparkContext 即生成一个Application;
- Job:一个Action 算子就会生成一个Job;
- Stage:Stage 等于宽依赖(ShuffleDependency)的个数加1;
- Task:一个 Stage 阶段中,最后一个RDD 的分区个数就是Task 的个数。
注意:Application->Job->Stage->Task 每一层都是1 对n 的关系。
5.1.4.8 RDD 持久化
- RDD Cache 缓存
RDD 通过Cache 或者Persist 方法将前面的计算结果缓存,默认情况下会把数据以缓存在JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的 action 算子时,该RDD 将会被缓存在计算节点的内存中,并供后面重用。
// 数据缓存。
wordToOneRdd.cache()
// 可以更改存储级别
//mapRdd.persist(StorageLevel.MEMORY_AND_DISK_2)
object StorageLevel {
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(true, true, true, false, 1)
级别 | 使用的空间 | CPU时间 | 是否在内存中 | 是否在磁盘上 |
---|---|---|---|---|
DISK_ONLY | 低 | 高 | 否 | 是 |
MEMORY_ONLY | 高 | 低 | 是 | 否 |
MEMORY_ONLY_SER | 低 | 高 | 是 | 否 |
MEMORY_AND_DISK | 高 | 中等 | 部分 | 部分 |
MEMORY_AND_DISK_SER | 低 | 高 | 部分 | 部分 |
缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD 的一系列转换,丢失的数据会被重算,由于RDD 的各个Partition 是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。
- RDD CheckPoint 检查点
所谓的检查点其实就是通过将RDD 中间结果写入磁盘 由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后有节点出现问题,可以从检查点开始重做血缘,减少了开销。
对RDD 进行checkpoint 操作并不会马上被执行,必须执行Action 操作才能触发。
// 设置检查点路径
sc.setCheckpointDir("./checkpoint1")
....业务逻辑
// 增加缓存,避免再重新跑一个 job 做 checkpoint
wordToOneRdd.cache()
// 数据检查点:针对 wordToOneRdd 做检查点计算
wordToOneRdd.checkpoint()
// 触发执行逻辑
wordToOneRdd.collect().foreach(println)
- 缓存和检查点区别
1)Cache 缓存只是将数据保存起来,不切断血缘依赖。Checkpoint 检查点切断血缘依赖。
2)Cache 缓存的数据通常存储在磁盘、内存等地方,可靠性低。Checkpoint 的数据通常存储在HDFS 等容错、高可用的文件系统,可靠性高。
3)建议对checkpoint()的RDD 使用Cache 缓存,这样 checkpoint 的job 只需从 Cache 缓存中读取数据即可,否则需要再从头计算一次RDD。
5.1.4.9 RDD 分区器
Spark 目前支持Hash 分区和Range 分区,和用户自定义分区。Hash 分区为当前的默认分区。分区器直接决定了RDD 中分区的个数、RDD 中每条数据经过Shuffle 后进入哪个分区,进而决定了Reduce 的个数。
➢ 只有Key-Value 类型的RDD 才有分区器,非 Key-Value 类型的RDD 分区的值是 None
➢ 每个RDD 的分区 ID 范围:0 ~ (numPartitions - 1),决定这个值是属于那个分区的。
-
Hash 分区:对于给定的 key,计算其hashCode,并除以分区个数取余
-
Range 分区:将一定范围内的数据映射到一个分区中,尽量保证每个分区数据均匀,而且分区间有序
5.1.4.10 RDD 文件读取与保存
Spark 的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统。
文件格式分为:text 文件、csv 文件、sequence 文件以及Object 文件;
文件系统分为:本地文件系统、HDFS、HBASE 以及数据库。
➢ text 文件
// 读取输入文件
val inputRDD: RDD[String] = sc.textFile("input/1.txt")
// 保存数据
inputRDD.saveAsTextFile("output")
➢ sequence 文件
SequenceFile 文件是Hadoop 用来存储二进制形式的key-value 对而设计的一种平面文件(Flat
File)。在 SparkContext 中,可以调用sequenceFile[keyClass, valueClass](path)。
// 保存数据为 SequenceFile
dataRDD.saveAsSequenceFile("output")
// 读取 SequenceFile 文件
sc.sequenceFile[Int,Int]("output").collect().foreach(println)
➢ object 对象文件
对象文件是将对象序列化后保存的文件,采用Java 的序列化机制。可以通过objectFileT:
ClassTag函数接收一个路径,读取对象文件,返回对应的RDD,也可以通过调用
saveAsObjectFile()实现对对象文件的输出。因为是序列化所以要指定类型。
// 保存数据
dataRDD.saveAsObjectFile("output")
// 读取数据
sc.objectFile[Int]("output").collect().foreach(println)
5.2 累加器
5.2.1 实现原理
累加器用来把Executor 端变量信息聚合到Driver 端。在Driver 程序中定义的变量,在Executor 端的每个Task 都会得到这个变量的一份新的副本,每个task 更新这些副本的值后,传回Driver 端进行merge。
// 1. 继承 AccumulatorV2,并设定泛型
// 2. 重写累加器的抽象方法
class WordCountAccumulator extends AccumulatorV2[String, mutable.Map[String,Long]]{
var map : mutable.Map[String, Long] = mutable.Map()
// 累加器是否为初始状态
override def isZero: Boolean = {
map.isEmpty
}
// 复制累加器
override def copy(): AccumulatorV2[String, mutable.Map[String, Long]] = {
new WordCountAccumulator
}
// 重置累加器
override def reset(): Unit = {
map.clear()
}
// 向累加器中增加数据 (In)
override def add(word: String): Unit = {
// 查询 map 中是否存在相同的单词
// 如果有相同的单词,那么单词的数量加 1
// 如果没有相同的单词,那么在 map 中增加这个单词
map(word) = map.getOrElse(word, 0L) + 1L
}
// 合并累加器
override def merge(other: AccumulatorV2[String, mutable.Map[String, Long]]):
Unit = {
val map1 = map
val map2 = other.value
// 两个 Map 的合并
map = map1.foldLeft(map2)(
( innerMap, kv ) => {
innerMap(kv._1) = innerMap.getOrElse(kv._1, 0L) + kv._2
innerMap
}
)
}
// 返回累加器的结果 (Out)
override def value: mutable.Map[String, Long] = map
}
5.3 广播变量
5.3.1 实现原理
广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个Spark 操作使用。比如,如果你的应用需要向所有节点发送一个较大的只读查询表,广播变量用起来都很顺手。在多个并行操作中使用同一个变量,但是 Spark 会为每个任务分别发送。
val rdd1 = sc.makeRDD(List( ("a",1), ("b", 2), ("c", 3), ("d", 4) ),4)
val list = List( ("a",4), ("b", 5), ("c", 6), ("d", 7) )
// 声明广播变量
val broadcast: Broadcast[List[(String, Int)]] = sc.broadcast(list)
val resultRDD: RDD[(String, (Int, Int))] = rdd1.map {
case (key, num) => {
var num2 = 0
// 使用广播变量
for ((k, v) <- broadcast.value) {
if (k == key) {
num2 = v
}
}
(key, (num, num2))
}
}
参考尚硅谷Spark课程制作