区域定位的当前技术实施途径

84 篇文章 0 订阅
42 篇文章 1 订阅
本文探讨了激光雷达在大尺度空间定位中的应用,强调其10cm级别的精度,同时介绍了基于图像模式识别的摄像头导引方法,尽管机器学习在速度上表现优秀,但工业级应用对精度的要求更高。文章还提及了虚拟现实设备接口中的空间定位接口和相机参数定义,展示了如何通过这些技术实现精确定位。
摘要由CSDN通过智能技术生成

初稿:Apr09,2024

1.大尺度空间位置定位

  • 首选还是激光雷达,在雷达距离目标30米的情形,定位精度大概在10cm的级别。
    • 扫描式激光雷达的角坐标精度有限,受限于机位与目标点位的相对距离,乘以最小的角度量化值,得到的就是最终的定位精度。
    • sick的雷达仍然是行业排名靠前的。
  • 依据区域的大小,扫描速度一般在10s,甚至亚分钟级,因为雷达的球面区域扫描需要时间。
  • 部署中激光传感器位置推荐固定机位,涉及到真实坐标和球坐标的转换。激光雷达的球坐标系反射回波会形成点云数据。然后点云数据进而进行计算,得到目标物体信息。
  • 定位数据有效度可以达到99%以上。

下图(原文:灵踪室内定位技术)可以明显地分辨出原始的扫描式激光雷达的工作模式(扫描线)和原始点云数据的特征。有障碍物和无障碍物时的雷达回波特征。

2.精确定位

  • 图像模式识别为基础的摄像头导引
    • 机器学习很难保证工业级应用所需的精度。
  • 速度很快,亚秒级

2.1 一份图像识别辅助空间定位函数接口

摘自:20203868-T-339 虚拟现实设备接口_定位设备。这份标准还未正式发布。这里仅摘出了静态空间位置定位,没有给出9自由度(位置、角速度,线加速度)的包含空间和速度的空间定位的接口。从接口定义中,你可以大致了解,使用相机进行位置信息重建所涉及的原始数据和可能算法。

2.2 相机参数定义示例

参数类型 描述
int32_t camera id  相机id
vrCameraType 相机类型:RGB,鱼眼,深度相机
float_focal_length_x x方向焦距
float_focal_length_y y方向焦距
float center length_x x方向光轴中心偏移
float center length y y方向光轴中心偏移
float radial_distortion k1 径向畸变参数
float radial_distortion k2 径向畸变参数
float radial_distortion k2 径向畸变参数
float tangential_distortion_p1 切向畸变参数
float tangential_distortion_p2 切向畸变参数
vrCameraExposureType 曝光类型 自动|非自动
vrCameraFocusType 焦距类型 自动对焦|非自动|连续录像|连续拍照
vrCameraShutterType 快门类型 全局|卷帘
vrlmageFormatType 图像格式类型 
vrlmageResolutionType 分辨率类型
vrRange with RangeType-FPS 帧率范围
int32 t current FPS 当前帧率

2.3 相机空间参数计算接口函数集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子正

thanks, bro...

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值