tensorflow_二分类模型之单张图片测试

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/twinkle_star1314/article/details/80318971

在上一篇博客中,已经训练好对应的分类模型,那么如何调用这个模型,分类其他图片呢?本文将对该过程进行解析。新建

1)predict.py输入以下内容:

import tensorflow as tf
import numpy as np
import os,glob,cv2
import sys,argparse


# First, pass the path of the image
dir_path = os.path.dirname(os.path.realpath(__file__))
image_path=sys.argv[1]
filename = dir_path +'/' +image_path

image_size=128
num_channels=3
images = []
# Reading the image using OpenCV
image = cv2.imread(filename)
print(image)
# Resizing the image to our desired size and preprocessing will be done exactly as done during training
image = cv2.resize(image, (image_size, image_size),0,0, cv2.INTER_LINEAR)
images.append(image)
images = np.array(images, dtype=np.uint8)
images = images.astype('float32')
images = np.multiply(images, 1.0/255.0)
#The input to the network is of shape [None image_size image_size num_channels]. Hence we reshape.
x_batch = images.reshape(1, image_size,image_size,num_channels)

## Let us restore the saved model
sess = tf.Session()
# Step-1: Recreate the network graph. At this step only graph is created.
saver = tf.train.import_meta_graph('dogs-cats-model.meta')//.meta存放的是训练过程中的图内容
# Step-2: Now let's load the weights saved using the restore method.
saver.restore(sess, tf.train.latest_checkpoint('./'))//dogs-cats-model.data-00000-of-00001,dogs-cats-model.index存放的是weight, biases等参数变量,该步骤只需填入以上文件所在文件夹的位置。

# Accessing the default graph which we have restored
graph = tf.get_default_graph()//调用已有图文件

# Now, let's get hold of the op that we can be processed to get the output.
# In the original network y_pred is the tensor that is the prediction of the network
y_pred = graph.get_tensor_by_name("y_pred:0")//通过文件名调用training过程中的变量的操作,类似全局变量

## Let's feed the images to the input placeholders
x= graph.get_tensor_by_name("x:0")
y_true = graph.get_tensor_by_name("y_true:0")
y_test_images = np.zeros((1, len(os.listdir('training_data'))))


### Creating the feed_dict that is required to be fed to calculate y_pred
feed_dict_testing = {x: x_batch, y_true: y_test_images}
result=sess.run(y_pred, feed_dict=feed_dict_testing)
# result is of this format [probabiliy_of_rose probability_of_sunflower]

print(result)

2)激活tensorflow环境之后,进入对应的目录,命令行输入以下命令:

python predict.py ./*.jpg待测试的图片名。


阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页