Math-Ug-1a-Pasw-007-三角函数及其属性

前篇:角的弧度表示

三角函数及其属性

我们假设你已经掌握初级三角学中,正锐角的sine,cosine和tangent定义(对比斜,邻比斜,对比邻)。
我们现在要把这个定义推广到大于 90 ° 90° 90°的角和负角上去。
提前说好,除非特殊标明,下文中所有角的度量都采用弧度制。

极角的定义

看下图:

在这里插入图片描述

X X X x x x轴正方向上任一点。
如果我们取线段 O X OX OX,绕端点 O O O逆时针旋转,到达一个终末位置,记为线段 O X ′ OX' OX,旋转过程中形成的角视为
如果顺时针旋转,则角视为
这些角在量值(不带单位和符号的数值)上是无限的。
我们把这种从x轴正方向开始测量的角叫做极角(polar angle)。
O X ′ OX' OX为终末位置的角有无限个,它们之间的区别是量值相差整数个 2 π 2\pi 2π

三角函数的定义

看图说话:

在这里插入图片描述

所有角的三角函数sine,cosine和tangent都按上图中标出的东西来定义: P : ( x , y ) P:(x,y) P:(x,y)是任一点, θ \theta θ是一个极角。
O P OP OP的长:
O P = r = x 2 + y 2 > 0 OP=r=\sqrt{x^2+y^2}>0 OP=r=x2+y2 >0
万事俱备,我们终于可以给出任意角 θ \theta θ三角函数的定义:

在这里插入图片描述

如果四个象限分开来看,上述定义都是初级三角学中sine,cosine和tangent定义的拓展(从 P P P点向 x x x轴作垂线,得直角三角形)。
r r r始终是正的,对应直角三角形里的斜边长。
x , y x,y x,y从三角形里对边,邻边长的正值,变成了坐标系里可正可负的带符号值。
进而决定了sine,cosine和tangent的正负。

  • 第一象限: x > 0 , y > 0 x>0,y>0 x>0,y>0: 都 > 0 >0 >0
  • 第二象限: x < 0 , y > 0 x<0,y>0 x<0,y>0: 只有 s i n θ > 0 sin\theta>0 sinθ>0
  • 第三象限: x < 0 , y < 0 x<0,y<0 x<0,y<0: 只有 t a n θ > 0 tan\theta>0 tanθ>0
  • 第四象限: x > 0 , y < 0 x>0,y<0 x>0,y<0: 只有 c o s θ > 0 cos\theta>0 cosθ>0

为了便于表示和计算,我们通常令 r = 1 r=1 r=1,这样可以直接得到不带 r r r 的函数值。

三角函数 sin ⁡ θ , cos ⁡ θ \sin\theta,\cos\theta sinθ,cosθ的图象

在这里插入图片描述

  1. s i n θ sin\theta sinθ c o s θ cos\theta cosθ的图象形状相同,但是在 x x x轴方向上相差 1 2 π \frac{1}{2}\pi 21π
    它们的关系是:
    sin ⁡ θ = cos ⁡ ( θ − 1 2 π ) , cos ⁡ θ = sin ⁡ ( θ + 1 2 π ) \sin\theta=\cos(\theta-\frac{1}{2}\pi),\quad\cos\theta=\sin(\theta+\frac{1}{2}\pi) sinθ=cos(θ21π),cosθ=sin(θ+21π)
  2. 这两个函数都是周期函数周期或者波长 2 π 2\pi 2π;意思是曲线每隔 2 π 2\pi 2π这个长度就重复自身的形状。
    结合我们之前讲的极角,这很好理解, 2 π 2\pi 2π就是极角转过一整个圆,无论是逆时针转还是顺时针转,终止边都在同一个位置。
  3. cos ⁡ θ \cos\theta cosθ是一个函数,所以 cos ⁡ θ = cos ⁡ ( − θ ) \cos\theta=\cos(-\theta) cosθ=cos(θ) sin ⁡ θ \sin\theta sinθ是一个函数,所以 − sin ⁡ θ = sin ⁡ ( − θ ) -\sin\theta=\sin(-\theta) sinθ=sin(θ)
  4. 两个函数的函数值在 ± 1 ±1 ±1之间振荡。

三角函数 tan ⁡ θ , cot ⁡ θ , sec ⁡ θ , csc ⁡ θ \tan\theta,\cot\theta,\sec\theta,\csc\theta tanθ,cotθ,secθ,cscθ的图象

在这里插入图片描述

一些三角函数公式

在这里插入图片描述

高中学的

  1. 和差化积
  2. 积化和差
  3. 倍角半角
  4. 余弦公式
  5. 正弦公式(这个没印象了)

简谐函数

我们目前遇到的都是 c o s θ cos\theta cosθ s i n A sinA sinA,无论是 θ \theta θ还是 A A A都是限制在几何上下文中的确定的角,但应用在其他领域的三角函数和几何角并没有关系。
举个例子,比如 c o s   ω t cos\ \omega t cos ωt这样的表达式, t t t代表时间, ω \omega ω代表另一个常量。
无论上下文是什么,等式都成立。

遵循这种思想,我们得到一个重要的等式,它揭示了任何函数都具有 a cos ⁡ u + b sin ⁡ u a\cos u+b\sin u acosu+bsinu的形式, u u u是自变量, a a a b b b是常量。
上式可以改写成 c cos ⁡ ( u + ϕ ) c\cos(u+\phi) ccos(u+ϕ)的形式, c c c ϕ \phi ϕ是常量,它们用 a , b a,b a,b表示:

改写过程如下:
首先有
c = a 2 + b 2 > 0 c=\sqrt{a^2+b^2}>0 c=a2+b2 >0
然后我们重写 a cos ⁡ u + b sin ⁡ u a\cos u+b\sin u acosu+bsinu
a cos ⁡ u + b sin ⁡ u = c [ ( a c ) cos ⁡ u + ( b c ) sin ⁡ u ] a\cos u+b\sin u=c[(\frac{a}{c})\cos u+(\frac{b}{c})\sin u] acosu+bsinu=c[(ca)cosu+(cb)sinu]
最后令 ϕ \phi ϕ等于满足以下条件的角:
c o s ϕ = a c a n d s i n ϕ = − b c cos\phi=\frac{a}{c}\quad and\quad sin\phi=-\frac{b}{c} cosϕ=caandsinϕ=cb

在这里插入图片描述

结合上图,我们发现 ϕ \phi ϕ可以由 Q : ( a , − b ) Q:(a,-b) Q:(a,b)结合原点与 x x x轴来构造。
以此位置为终止边的任一极角都满足上述条件;我们选择量值最小的角。
(放到极坐标系里, c c c就是极轴长, ϕ \phi ϕ就是极角)。
最终我们得到:
a cos ⁡ u + b sin ⁡ u = c [ cos ⁡ ϕ cos ⁡ u − sin ⁡ ϕ sin ⁡ u ] = c cos ⁡ ( u + ϕ ) a\cos u+b\sin u=c[\cos\phi\cos u-\sin\phi\sin u]=c\cos(u+\phi) acosu+bsinu=c[cosϕcosusinϕsinu]=ccos(u+ϕ)

在这里插入图片描述

通过角,将极坐标系和直角坐标系联系到一起?
具有 A cos ⁡ ( k u + α ) A\cos(ku+\alpha) Acos(ku+α)形式, A , k , α A,k,\alpha A,k,α是任何常量,叫做简谐函数或变量为 u u u正弦曲线
我们也可以改写成 A sin ⁡ ( k u + α + π 2 ) A\sin(ku+\alpha+\frac{\pi}{2}) Asin(ku+α+2π)的形式。

考虑如下简谐函数:
y = c cos ⁡ ( ω t + ϕ ) ( c > 0 ) y=c\cos(\omega t+\phi)\quad (c>0) y=ccos(ωt+ϕ)(c>0)
t表示时间。
这个函数的因变量 y y y随着像规则波一样变化的时间而变化(如果距离x代替时间t作为变量,也可以说随着距离变化)。

在这里插入图片描述

曲线的整体形状和 c cos ⁡ t c\cos t ccost相同,但沿 t t t轴向左平移了 ϕ ω \frac{\phi}{\omega} ωϕ,整体周期也拉伸或压缩,取决于 ω \omega ω ω > 0 \omega>0 ω>0压缩; ω < 0 \omega<0 ω<0拉伸。
曲线以 2 π ω \frac{2\pi}{\omega} ω2π为周期重复,由此得到等式:
y = c cos ⁡ [ ω ( t + 2 π ω ) + ϕ ] = c cos ⁡ ( ω t + 2 π + ϕ ) = c cos ⁡ ( ω t + ϕ ) y=c\cos[\omega(t+\frac{2\pi}{\omega})+\phi]=c\cos(\omega t+2\pi+\phi)=c\cos(\omega t+ \phi) y=ccos[ω(t+ω2π)+ϕ]=ccos(ωt+2π+ϕ)=ccos(ωt+ϕ)
函数的每部分都有它的定义:
c > 0 c>0 c>0叫做振幅(amplitude) y y y是在 ± c ±c ±c之间振荡(oscillate)
频率(frequency) 是单位时间循环的次数,是 ω 2 π \frac{\omega}{2\pi} 2πω ω \omega ω叫做角频率(circular and angular frequency)
ϕ \phi ϕ叫做相位角(phase angle)初相角

p p p为周期的周期函数的一般形式是 f ( x + p ) = f ( x ) f(x+p)=f(x) f(x+p)=f(x),对任意 x x x都成立。
如果 p p p为周期,那么显然 2 p , 3 p 2p,3p 2p,3p…都是周期。
我们一般说的周期,是最小正周期 p p p

自测题

在这里插入图片描述

cos ⁡ π 12 = 1 + cos ⁡ π 6 2 = 1 + 3 2 2 \begin{align*} \cos\frac{\pi}{12}&=\sqrt{\frac{1+\cos \frac{\pi}{6}}{2}}\\ &=\sqrt{\frac{1+\frac{\sqrt3}{2}}{2}} \end{align*} cos12π=21+cos6π =21+23
sin ⁡ π 12 = + 1 − cos ⁡ π 6 2 = + 1 − 3 2 2 \begin{align*} \sin\frac{\pi}{12}&=+\sqrt{\frac{1-\cos \frac{\pi}{6}}{2}}\\ &=+\sqrt{\frac{1-\frac{\sqrt3}{2}}{2}} \end{align*} sin12π=+21cos6π =+2123

harmonic:capable of expression in the form of sine and cosine functions(mathematics term);
of or concerned with an oscillation that has a frequency that is an integral multiple of a fundamental frequency(physics term)

后篇:逆函数

  • 39
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值