函数
圆的面积
A
A
A取决于它的半径
r
r
r,这种“取决于”的关系(或者说依赖关系)由公式
A
=
π
r
2
A=\pi r^2
A=πr2 表示。
把这个特殊的例子一般化,假设有一个自变量
x
x
x,当它取特定数值时,就决定了另一个因变量
y
y
y的值——且这个值唯一。我们就说
y
y
y是
x
x
x的函数,写作:
y
=
f
(
x
)
,
y
=
g
(
x
)
y=f(x),\quad y=g(x)
y=f(x),y=g(x)
f
,
g
f,g
f,g两个不同的字母用来区分不同的依赖关系,放到坐标系也就是不同的图象。这两个字母也是独立的,并不必须要和某个公式关联。它可以代表某种规则,程序或者计算过程,只要求它一点:当提供给它一个
x
x
x值时,它可以产生唯一的
y
y
y值。抽象层面来说,可以把函数看成一个输入-输出机器。如图:
现在我们进一步构建复杂函数,假设输入不是单个自变量
x
x
x,而是另一个关于
x
x
x的函数,比如
2
x
2x
2x。我们绘制
f
f
f的图象,自变量是
x
x
x,那么
2
x
2x
2x是什么呢?我们管它叫
f
f
f的参数。
函数并不一定以
y
=
f
(
x
)
y=f(x)
y=f(x)的形式出现,它还可以隐式表示成公式,比如
x
2
+
y
2
=
1
x^2+y^2=1
x2+y2=1
之前我们讲过,这可以表示一个圆心是原点,半径为
1
1
1的圆。隐函数也可以变成普通的函数形式,但得到的不是一个函数,是两个分开的单值函数。
y
=
1
−
x
2
,
y
=
−
1
−
x
2
y=\sqrt{1-x^2},\quad y=-\sqrt{1-x^2}
y=1−x2,y=−1−x2
分别表示圆的上半和下半。
假设
c
c
c是一个正常量,我们给定一个函数
f
f
f,并画出它的图象
y
=
f
(
x
)
y=f(x)
y=f(x)。那么
y
=
f
(
x
−
c
)
y=f(x-c)
y=f(x−c)的图象形状和
f
(
x
)
f(x)
f(x)一样,但它的位置沿
x
x
x轴向右平移了距离
c
c
c。同理,
y
=
f
(
x
+
c
)
y=f(x+c)
y=f(x+c)就是向左平移。这叫做函数的平移。
translation:to move (a figure or body) laterally, without rotation, dilation, or angular displacement
自变量使用的字母可以随意替换,所以我们把自变量又叫做dummy variable。有时我们不代入具体值,比如
f
(
2
π
)
f(2\pi)
f(2π)而是代入
f
(
r
)
,
f
(
x
2
)
,
f
(
x
−
y
)
f(r),f(x^2),f(x-y)
f(r),f(x2),f(x−y),我们把
r
,
x
2
,
x
−
y
r,x^2,x-y
r,x2,x−y叫做参数。
接下来说一下函数图象的对称性,这对我们描绘图象有很大帮助。关于
y
y
y轴对称的函数叫做偶函数。关于原点对称的函数叫做奇函数。有
有了对称性,我们只需知道
x
>
0
x>0
x>0时的图象,然后利用对称性画出另一半,而不用计算
x
<
0
x<0
x<0时的函数值。
有些函数图象并不是光滑的,而存在跳跃和不连续处。
这种函数的每一个跳跃,或者说构建单位叫单位步函数H(t),或者叫做赫维赛德(它的发明者)函数。有时又用U(t)表示。
H
(
t
)
=
{
0
when
t
<
0
,
1
when
t
⩾
0
H(t) = \begin{cases} 0 &\text{when } t<0, \\ 1 &\text{when } t\geqslant0 \end{cases}
H(t)={01when t<0,when t⩾0
跳跃点可以改变,函数也就可以改写成:
H
(
t
−
t
0
)
=
{
0
when
t
<
t
0
,
1
when
t
⩾
t
0
H(t-t_0) = \begin{cases} 0 &\text{when } t<t_0, \\ 1 &\text{when } t\geqslant t_0 \end{cases}
H(t−t0)={01when t<t0,when t⩾t0
图象如下:
这样的题,首先要知道一个事情:
H
(
t
0
−
t
)
是
H
(
t
−
t
0
)
H(t_0-t)是H(t-t_0)
H(t0−t)是H(t−t0)对调区间,例:
H
(
t
−
2
)
=
{
0
when
t
<
2
,
1
when
t
⩾
2
H
(
2
−
t
)
=
{
0
when
t
>
2
,
1
when
t
⩽
2
H(t-2) = \begin{cases} 0 &\text{when } t<2, \\ 1 &\text{when } t\geqslant 2 \end{cases} H(2-t) = \begin{cases} 0 &\text{when } t>2, \\ 1 &\text{when } t\leqslant 2 \end{cases}
H(t−2)={01when t<2,when t⩾2H(2−t)={01when t>2,when t⩽2
其次,我们按着跳跃点分割区间,然后按区间写每段函数即可。得到答案如下:
H
(
t
)
=
{
0
when
t
<
−
1
,
1
when
−
1
⩽
t
⩽
2
0
when
t
>
2
H(t) = \begin{cases} 0 &\text{when } t<-1, \\ 1 &\text{when } -1\leqslant t\leqslant 2\\ 0 &\text{when } t>2 \end{cases}
H(t)=⎩
⎨
⎧010when t<−1,when −1⩽t⩽2when t>2
图象如下:
一个特殊的奇函数
s
g
n
sgn
sgn定义如下:
叫做符号函数。
signum:来自拉丁文signum,表示sign,为了和三角函数的sine区分,用signum而不用sign。
H
(
t
)
H(t)
H(t)与
s
g
n
t
sgnt
sgnt可以与其他函数结合,从而得到各种不连续,在特定取值有特定方向(符号)的函数。比如:偶函数
y
=
t
s
g
n
t
y=tsgnt
y=tsgnt和
y
=
s
g
n
(
1
−
t
2
)
y=sgn(1-t^2)
y=sgn(1−t2)。图象如下:
自测题
y
=
{
0
when
t
<
−
1
,
−
t
when
−
1
⩽
t
<
0
,
0
when
t
=
0
,
t
when
0
<
t
⩽
1
,
0
when
t
>
1
y = \begin{cases} 0 &\text{when } t<-1, \\ -t &\text{when } -1\leqslant t<0, \\ 0 &\text{when } t= 0, \\ t &\text{when } 0< t\leqslant1, \\ 0 &\text{when } t>1 \end{cases}
y=⎩
⎨
⎧0−t0t0when t<−1,when −1⩽t<0,when t=0,when 0<t⩽1,when t>1
这里可能错了,没好好算,跳跃点处可能不太对。
还有就是Mathematica里面画出来的图象不是这样的,不知为何。
f[t]=(HeavisideTheta[t+1]+HeavisideTheta[1-t]-1)tSign[t
];
Plot[f[t],{t, -3, 3}]