Math-Ug-1a-Pasw-005-函数

前篇:圆的方程和图象

任意门

函数

圆的面积 A A A取决于它的半径 r r r,这种“取决于”的关系(或者说依赖关系)由公式 A = π r 2 A=\pi r^2 A=πr2 表示。
把这个特殊的例子一般化,假设有一个自变量 x x x,当它取特定数值时,就决定了另一个因变量 y y y的值——且这个值唯一。我们就说 y y y x x x函数,写作:
y = f ( x ) , y = g ( x ) y=f(x),\quad y=g(x) y=f(x),y=g(x)
f , g f,g f,g两个不同的字母用来区分不同的依赖关系,放到坐标系也就是不同的图象。这两个字母也是独立的,并不必须要和某个公式关联。它可以代表某种规则,程序或者计算过程,只要求它一点:当提供给它一个 x x x值时,它可以产生唯一的 y y y值。抽象层面来说,可以把函数看成一个输入-输出机器。如图:
现在我们进一步构建复杂函数,假设输入不是单个自变量 x x x,而是另一个关于 x x x的函数,比如 2 x 2x 2x。我们绘制 f f f的图象,自变量是 x x x,那么 2 x 2x 2x是什么呢?我们管它叫 f f f参数

函数并不一定以 y = f ( x ) y=f(x) y=f(x)的形式出现,它还可以隐式表示成公式,比如
x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1
之前我们讲过,这可以表示一个圆心是原点,半径为 1 1 1的圆。隐函数也可以变成普通的函数形式,但得到的不是一个函数,是两个分开的单值函数。
y = 1 − x 2 , y = − 1 − x 2 y=\sqrt{1-x^2},\quad y=-\sqrt{1-x^2} y=1x2 ,y=1x2
分别表示圆的上半和下半。

假设 c c c是一个正常量,我们给定一个函数 f f f,并画出它的图象 y = f ( x ) y=f(x) y=f(x)。那么 y = f ( x − c ) y=f(x-c) y=f(xc)的图象形状和 f ( x ) f(x) f(x)一样,但它的位置沿 x x x轴向右平移了距离 c c c。同理, y = f ( x + c ) y=f(x+c) y=f(x+c)就是向左平移。这叫做函数的平移
translation:to move (a figure or body) laterally, without rotation, dilation, or angular displacement
在这里插入图片描述
自变量使用的字母可以随意替换,所以我们把自变量又叫做dummy variable。有时我们不代入具体值,比如 f ( 2 π ) f(2\pi) f(2π)而是代入 f ( r ) , f ( x 2 ) , f ( x − y ) f(r),f(x^2),f(x-y) f(r),f(x2),f(xy),我们把 r , x 2 , x − y r,x^2,x-y r,x2,xy叫做参数

接下来说一下函数图象的对称性,这对我们描绘图象有很大帮助。关于 y y y轴对称的函数叫做偶函数。关于原点对称的函数叫做奇函数。有
在这里插入图片描述
有了对称性,我们只需知道 x > 0 x>0 x>0时的图象,然后利用对称性画出另一半,而不用计算 x < 0 x<0 x<0时的函数值。

有些函数图象并不是光滑的,而存在跳跃和不连续处。
这种函数的每一个跳跃,或者说构建单位叫单位步函数H(t),或者叫做赫维赛德(它的发明者)函数。有时又用U(t)表示。
H ( t ) = { 0 when  t < 0 , 1 when  t ⩾ 0 H(t) = \begin{cases} 0 &\text{when } t<0, \\ 1 &\text{when } t\geqslant0 \end{cases} H(t)={01when t<0,when t0
跳跃点可以改变,函数也就可以改写成:
H ( t − t 0 ) = { 0 when  t < t 0 , 1 when  t ⩾ t 0 H(t-t_0) = \begin{cases} 0 &\text{when } t<t_0, \\ 1 &\text{when } t\geqslant t_0 \end{cases} H(tt0)={01when t<t0,when tt0
图象如下:
在这里插入图片描述
在这里插入图片描述
这样的题,首先要知道一个事情: H ( t 0 − t ) 是 H ( t − t 0 ) H(t_0-t)是H(t-t_0) H(t0t)H(tt0)对调区间,例:
H ( t − 2 ) = { 0 when  t < 2 , 1 when  t ⩾ 2 H ( 2 − t ) = { 0 when  t > 2 , 1 when  t ⩽ 2 H(t-2) = \begin{cases} 0 &\text{when } t<2, \\ 1 &\text{when } t\geqslant 2 \end{cases} H(2-t) = \begin{cases} 0 &\text{when } t>2, \\ 1 &\text{when } t\leqslant 2 \end{cases} H(t2)={01when t<2,when t2H(2t)={01when t>2,when t2
其次,我们按着跳跃点分割区间,然后按区间写每段函数即可。得到答案如下:
H ( t ) = { 0 when  t < − 1 , 1 when  − 1 ⩽ t ⩽ 2 0 when  t > 2 H(t) = \begin{cases} 0 &\text{when } t<-1, \\ 1 &\text{when } -1\leqslant t\leqslant 2\\ 0 &\text{when } t>2 \end{cases} H(t)= 010when t<1,when 1t2when t>2
图象如下:
在这里插入图片描述

一个特殊的奇函数 s g n sgn sgn定义如下:
在这里插入图片描述
叫做符号函数
signum:来自拉丁文signum,表示sign,为了和三角函数的sine区分,用signum而不用sign。
H ( t ) H(t) H(t) s g n t sgnt sgnt可以与其他函数结合,从而得到各种不连续,在特定取值有特定方向(符号)的函数。比如:偶函数 y = t s g n t y=tsgnt y=tsgnt y = s g n ( 1 − t 2 ) y=sgn(1-t^2) y=sgn(1t2)。图象如下:
在这里插入图片描述

自测题

在这里插入图片描述
y = { 0 when  t < − 1 , − t when  − 1 ⩽ t < 0 , 0 when  t = 0 , t when  0 < t ⩽ 1 , 0 when  t > 1 y = \begin{cases} 0 &\text{when } t<-1, \\ -t &\text{when } -1\leqslant t<0, \\ 0 &\text{when } t= 0, \\ t &\text{when } 0< t\leqslant1, \\ 0 &\text{when } t>1 \end{cases} y= 0t0t0when t<1,when 1t<0,when t=0,when 0<t1,when t>1
这里可能错了,没好好算,跳跃点处可能不太对。
还有就是Mathematica里面画出来的图象不是这样的,不知为何。

f[t]=(HeavisideTheta[t+1]+HeavisideTheta[1-t]-1)tSign[t
];
Plot[f[t],{t, -3, 3}]

后篇:角的弧度表示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值