有n种硬币,面值分别为V1,V2,V3,.....Vn,每种都有无限多。给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值。1<=n>=100,
0<=S<=10000,1<=Vi<=S.
思路:本题是固定终点和起点的DAG动态规划。我们把每种面值看做一个点,表示“还需要凑足的面值”,则初始状态为S,目标状态为0。如当前在状态i,没使用一个硬币j,状态变转移到i-Vj。
我对于这道题目的意义就是想讨论一下书上所说的三种DP方式和路径输出方式,因为书上没有给出完整的代码,我觉得整理一下,对DAG上DP的学习非常有帮助。
第一:递推法。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=10000;
const int inf=1000000000;
int n,S;
int Min[maxn],Max[maxn],V[maxn];
void print_ans(int *dp,int S)
{
for(int i=1;i<=n;i++)
{
if(S>=V[i]&&dp[S]==dp[S-V[i]+1])
{
printf("%d\n", i);
print_ans(dp,S-V[i]);
break;
}
}
}
int main()
{
int i,j;
while(scanf("%d%d",&n,&S)==2)
{
memset(Min,0,sizeof(Min));
memset(Max,0,sizeof(Max));
memset(V,0,sizeof(V));
for(i=1;i<=n;i++) scanf("%d",&V[i]);
for(i=1;i<=n;i++) Min[i]=inf,Max[i]=-inf;
Min[0]=Max[0]=0;
for(i=1;i<=S;i++)
{
for(j=1;j<=n;j++)
{
if(i>=V[j])
{
Min[i]=min(Min[i],Min[i-V[j]]+1);
Max[i]=max(Max[i],Max[i-V[j]]+1);
}
}
}
}
return 0;
}
第二种:递推法,但是路劲已经优化,用一个min_coin[],max_coin[]来表示“面值还差i时”的面值种类j.虽然我现在还在痛苦的学习DP中,也谈不上什么经验,但是我非常喜欢这种方法。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=10000;
const int inf=1000000000;
int Min[maxn],Max[maxn],min_coin[maxn],max_coin[maxn];
int V[maxn];
int n,S;
void print(int *dp_path,int S)
{
while(S)
{
printf("%d",dp_path[S]);
S-=V[dp_path[S]];
}
}
int main()
{
int i,j;
scanf("%d%d",&n,&S);
for(i=1;i<=n;i++) scanf("%d",&V[i]);
Min[0]=Max[0]=0;
for(i=1;i<=n;i++) Min[i]=inf,Max[i]=-inf;
for(i=1;i<=S;i++)
{
for(j=1;j<=n;j++)
{
if(i>=V[j])
{
if(Min[i]>Min[i-V[j]]+1)
{
Min[i]=Min[i-V[j]+1];
min_coin[i]=j;
}
if(Max[i]<Max[i-V[j]]+1)
{
Max[i]=Max[i-V[j]]+1;
max_coin[i]=j;
}
}
}
}
print(min_coin,S);
printf("\n");
print(max_coin,S);
printf("\n");
return 0;
}
第三种:记忆搜索,要搜索两次。。。待续,回到寝室在写