DP DAG 9-3硬币问题(算法竞赛入门经典p162)

有n种硬币,面值分别为V1,V2,V3,.....Vn,每种都有无限多。给定非负整数S,可以选用多少个硬币,使得面值之和恰好为S?输出硬币数目的最小值和最大值。1<=n>=100,

0<=S<=10000,1<=Vi<=S.

思路:本题是固定终点和起点的DAG动态规划。我们把每种面值看做一个点,表示“还需要凑足的面值”,则初始状态为S,目标状态为0。如当前在状态i,没使用一个硬币j,状态变转移到i-Vj。


我对于这道题目的意义就是想讨论一下书上所说的三种DP方式和路径输出方式,因为书上没有给出完整的代码,我觉得整理一下,对DAG上DP的学习非常有帮助。

第一:递推法。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=10000;
const int inf=1000000000;
int n,S;
int Min[maxn],Max[maxn],V[maxn];

void print_ans(int *dp,int S)
{
	for(int i=1;i<=n;i++)
	{
		if(S>=V[i]&&dp[S]==dp[S-V[i]+1])
		{
			printf("%d\n", i);
			print_ans(dp,S-V[i]);
			break;
		}
	}
}
int main()
{
	int i,j;
    while(scanf("%d%d",&n,&S)==2)
    {	
    	memset(Min,0,sizeof(Min));
    	memset(Max,0,sizeof(Max));
    	memset(V,0,sizeof(V));
    	for(i=1;i<=n;i++)     scanf("%d",&V[i]);
    	for(i=1;i<=n;i++)	  Min[i]=inf,Max[i]=-inf;

    	Min[0]=Max[0]=0;
    	for(i=1;i<=S;i++)
    	{
    		for(j=1;j<=n;j++)
    		{
    			if(i>=V[j])
    			{
    				Min[i]=min(Min[i],Min[i-V[j]]+1);
    				Max[i]=max(Max[i],Max[i-V[j]]+1);
    			}
    		}
    	}
    }
    return 0;
}
第二种:递推法,但是路劲已经优化,用一个min_coin[],max_coin[]来表示“面值还差i时”的面值种类j.虽然我现在还在痛苦的学习DP中,也谈不上什么经验,但是我非常喜欢这种方法。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=10000;
const int inf=1000000000;

int Min[maxn],Max[maxn],min_coin[maxn],max_coin[maxn];
int V[maxn];
int n,S;
void print(int *dp_path,int S)
{
	while(S)
	{
		printf("%d",dp_path[S]);
		S-=V[dp_path[S]];
	}
}

int main()
{
	int i,j;
        scanf("%d%d",&n,&S);
        for(i=1;i<=n;i++)		scanf("%d",&V[i]);
	Min[0]=Max[0]=0;
	for(i=1;i<=n;i++)		Min[i]=inf,Max[i]=-inf;
	for(i=1;i<=S;i++)
	{
		for(j=1;j<=n;j++)
		{
		        if(i>=V[j])
			{
				if(Min[i]>Min[i-V[j]]+1)
				{
					Min[i]=Min[i-V[j]+1];
					min_coin[i]=j;
				}
				if(Max[i]<Max[i-V[j]]+1)
				{
					Max[i]=Max[i-V[j]]+1;
					max_coin[i]=j;
				}
			}
		}
	}
	print(min_coin,S);
	printf("\n");
	print(max_coin,S);
	printf("\n");
	return 0;
}
第三种:记忆搜索,要搜索两次。。。待续,回到寝室在写 


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值