ML基础
twt9628
这个作者很懒,什么都没留下…
展开
-
cross entropy的理解
文章目录公式:LG(logistics regression)Multi labels参考:简单谈谈Cross Entropy LossCross Entropy公式:实际就是entropy与KL divergence的结合离散:连续:总结:从熵的角度看,q(训练得到的分布)与p(数据实际的分布)越远,则对应的loss越大(p的熵不变,KL divergence越大)。因...转载 2019-03-11 15:23:37 · 970 阅读 · 0 评论 -
GMM(Gaussian Mixture Model) 高斯混合模型的一些简单概念
参考自:高斯混合模型(GMM)高斯混合模型(GMM)定义:高斯混合模型可以看作是由 K 个单高斯模型组合而成的模型,这 K 个子模型是混合模型的隐变量(Hidden variable)**。一般来说,一个混合模型可以使用任何概率分布,这里使用高斯混合模型是因为高斯分布具备很好的数学性质以及良好的计算性能。首先定义如下信息:高斯混合模型的概率分布为:对于这个模型而言,参数θ=(μk...转载 2019-03-12 15:31:53 · 1776 阅读 · 0 评论 -
【转】代价曲线的理解
主要参考:机器学习(周志华)第2.3.4节中,代价曲线的理解? - xf3227的回答 - 知乎https://www.zhihu.com/question/63492375/answer/247885093模型评估与选择(后篇)-代价曲线文章目录基本概念定义:代价直线(未归一化):代价直线(归一化)代价曲线基本概念定义:注意这里的类别定义有所不同,将第0类作为正类,第1类作为反类。...转载 2019-03-21 12:17:38 · 5035 阅读 · 2 评论 -
ROC AUC初步理解
主要参考:机器学习之分类性能度量指标 : ROC曲线、AUC值、正确率、召回率文章目录some basic conceptsROC定义:理解:怎么得到ROC曲线?AUC定义理解:为啥要用ROC/AUC?some basic conceptsROC定义:ROC曲线:接收者操作特征曲线(receiver operating characteristic curve),是反映敏感性和特异性...转载 2019-03-18 17:27:02 · 221 阅读 · 0 评论