GMM(Gaussian Mixture Model) 高斯混合模型的一些简单概念

参考自:
高斯混合模型(GMM)

高斯混合模型(GMM)

定义:

高斯混合模型可以看作是由 K 个单高斯模型组合而成的模型这 K 个子模型是混合模型的隐变量(Hidden variable)**。一般来说,一个混合模型可以使用任何概率分布,这里使用高斯混合模型是因为高斯分布具备很好的数学性质以及良好的计算性能。

首先定义如下信息:
在这里插入图片描述

高斯混合模型的概率分布为:
在这里插入图片描述

对于这个模型而言,参数 θ = ( μ k ~ , σ k ~ , α k ~ ) \theta=(\tilde{\mu_k}, \tilde{\sigma_k}, \tilde{\alpha_k}) θ=(μk~,σk~,αk~),也就是每个子模型的期望、方差(或协方差)、在混合模型中发生的概率

总结:每一个data x总是由K个高斯分布得到的。而这K个高斯分布即所谓hidden variable

Bayesian 理解

GMM原始形式:
在这里插入图片描述
前面提到的 π k \pi_k πk 可以看成是第 k 类被选中的概率。我们引入一个新的 K 维随机变量 z . z k ( 1 ≤ k ≤ K ) z_k (1 \leq k \leq K) zk(1kK) 只能取0或1两个值; z k = 1 z_k = 1 zk=1 表示第 k 类被选中的概率,即 p ( z k = 1 ) = π k p(z_k = 1) = \pi_k p(zk=1)=πk ;如果 z k = 0 z_k = 0 zk=0 表示第 k 类没有被选中的概率。更数学化一点, z k z_k zk 要满足以下两个条件:
在这里插入图片描述

假设 z k z_k zk 之间是独立同分布的,我们可以写出 z \boldsymbol{z} z 的联合概率分布形式:
在这里插入图片描述
而K维向量z中的每一个分量都是对应一个高斯分布,因此:
在这里插入图片描述
上式可以理解为:在"已知"latent variable 隐含变量z的情况下,数据点x产生的概率

在这里插入图片描述
隐含变量(latent variable)中『隐含』的意义是:我们知道数据可以分成几类,但是随机抽取一个数据点,我们不知道这个数据点属于其中哪一类或者哪几类,它的归属我们观察不到,因此引入一个隐含变量 z \boldsymbol{z} z 来描述这个现象。

注意到在贝叶斯的思想下, p ( z ) p(\boldsymbol{z}) p(z) 是先验概率, p ( x ∣ z ) p(\boldsymbol{x}| \boldsymbol{z}) p(xz) 是似然概率,很自然我们会想到求出后验概率 p ( z ∣ x ) p(\boldsymbol{z}| \boldsymbol{x}) p(zx)

在这里插入图片描述

上式中我们定义符号 γ ( z k ) \gamma(z_k) γ(zk) 来表示第 k 个分量的后验概率。在贝叶斯的观点下, π k \pi_k πk 可视为 z k = 1 z_k=1 zk=1 的先验概率。

参数学习:

最大似然法(Maximum Likelihood)

在这里插入图片描述

如何计算高斯混合模型的参数呢?这里我们无法像单高斯模型那样使用最大似然法来求导求得使 likelihood 最大的参数,因为对于每个观测数据点来说,事先并不知道它是属于哪个子分布的(hidden variable),因此 log 里面还有求和, K 个高斯模型的和不是一个高斯模型,对于每个子模型都有未知的 α k , μ k , σ k \alpha_{k}, \mu_{k}, \sigma_{k} αk,μk,σk,直接求导无法计算。需要通过迭代的方法求解。

EM算法

可参考:

高斯混合模型(GMM)的两种详解及简化

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 高斯混合模型 (Gaussian Mixture Model) 是一种生成模型,假设数据是由多个高斯分布生成的,并使用最大似然估计或EM算法来估计模型参数。它通常用于聚类分析,并在许多领域中都得到了广泛应用,如图像分析、信号处理、生物信息学等。 ### 回答2: 高斯混合模型是一种概率模型,用于对数据进行建模和聚类。它由多个高斯分布混合而成,每个高斯分布代表一个聚类。高斯混合模型用于具有复杂数据分布的场景,能够对数据的形状、密度和方差等进行建模。 在高斯混合模型中,每个高斯分布都有自己的均值和协方差矩阵。通过选择适当的混合模型参数,可以使得模型能够更好地拟合数据。模型的参数估计可以使用最大似然估计或其他优化算法进行求解。 高斯混合模型可以用于聚类分析,在聚类过程中,模型根据数据分布的不同,将数据点归属于不同的聚类。基于高斯混合模型的聚类方法可以灵活地适应不同形状的数据分布,能够发现非球形和重叠的聚类。 此外,高斯混合模型也可以用于生成新的数据样本。根据已经学得的模型参数,可以从高斯分布中随机采样,生成与原始数据相似的新数据样本。 总之,高斯混合模型是一种常用的概率模型,可以用于数据的建模、聚类和生成。它具有灵活性和准确性,适用于各种不同类型的数据分析问题。 ### 回答3: 高斯混合模型Gaussian Mixture ModelGMM)是一种用于对数据进行建模和聚类的统计模型。GMM可以看作是多个高斯分布的线性组合,每个高斯分布表示一个聚类。 GMM的基本思想是假设数据是由多个高斯分布组成的混合体。通过估计每个高斯分布的均值和方差,以及混合系数(表示每个分布的权重),可以得到对数据进行建模的 GMM。这样,可以通过计算每个数据点对于每个高斯分布的概率来进行聚类。具体而言,对于给定数据点,计算其属于每个高斯分布的概率,然后根据概率大小将其归为相应的聚类。 GMM的参数估计可以使用最大似然估计(Maximum Likelihood Estimation,MLE)方法。通过迭代优化,可以找到一个局部最优解,使得 GMM 最大化观测数据的似然函数。 GMM有以下几个特点:首先,GMM允许数据点属于多个聚类。每个聚类的权重是小于等于1的概率。其次,GMM对数据的分布形态没有假设,而是通过调整高斯分布的均值和方差来适应数据。最后,GMM可以解决由于观测噪声、缺失数据或异常值引起的数据不完全性和不准确性的问题。 GMM在模式识别、数据挖掘和图像处理等领域广泛应用,例如人脸识别、语音识别和文本分类等。它可以根据数据的分布情况自动进行聚类分析,并可以用于特征提取、数据压缩和异常检测等任务。然而,GMM也存在一些缺点,比如对于大规模数据集的计算复杂度较高,并且对初始参数敏感,需要进行适当选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值