时间限制:C/C++ 1000MS,其他语言 2000MS
内存限制:C/C++ 256MB,其他语言 512MB
描述
N位同学站成一排,音乐老师要请其中的(N−K)位同学出列,使得剩下的K位同学排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2,…,K,他们的身高分别为T_1,T_2,…,T_K,则他们的身高满足T_1<T_2<…<T_i,T_i>T_i+1>…>T_K(1≤i≤K)。
你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
输入描述
输入的第一行是一个整数N(2≤N≤100),表示同学的总数。第二行有n个整数,用空格分隔,第i个整数T_i(130≤T_i≤230)是第i位同学的身高(厘米)。
输出描述
输出包括一行,这一行只包含一个整数,就是最少需要几位同学出列。
用例输入
8
186 186 150 200 160 130 197 220
用例输出
4
AC代码
def min_removal_for_chorus(N, heights):
increasing = [1] * N # 记录从左到右的最长递增子序列
decreasing = [1] * N # 记录从右到左的最长递减子序列
# 计算从左到右的最长递增子序列
for i in range(1, N):
for j in range(i):
if heights[i] > heights[j]:
increasing[i] = max(increasing[i], increasing[j] + 1)
# 计算从右到左的最长递减子序列
for i in range(N - 2, -1, -1):
for j in range(N - 1, i, -1):
if heights[i] > heights[j]:
decreasing[i] = max(decreasing[i], decreasing[j] + 1)
# 找到同一位置既在递增子序列中又在递减子序列中的最大值
max_biotonic = 0
for i in range(N):
max_biotonic = max(max_biotonic, increasing[i] + decreasing[i] - 1)
# 计算最少需要出列的人数
return N - max_biotonic
# 读取输入
N = int(input())
heights = list(map(int, input().split()))
# 输出结果
result = min_removal_for_chorus(N, heights)
print(result)