【OJ刷题】合唱队形(python3)

时间限制:C/C++ 1000MS,其他语言 2000MS
内存限制:C/C++ 256MB,其他语言 512MB

描述

N位同学站成一排,音乐老师要请其中的(N−K)位同学出列,使得剩下的K位同学排成合唱队形。

合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2,…,K,他们的身高分别为T_1,T_2,…,T_K,则他们的身高满足T_1<T_2<…<T_i,T_i>T_i+1>…>T_K(1≤i≤K)。

你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

输入描述

输入的第一行是一个整数N(2≤N≤100),表示同学的总数。第二行有n个整数,用空格分隔,第i个整数T_i(130≤T_i≤230)是第i位同学的身高(厘米)。

输出描述

输出包括一行,这一行只包含一个整数,就是最少需要几位同学出列。

用例输入

8
186 186 150 200 160 130 197 220

用例输出

4

AC代码

def min_removal_for_chorus(N, heights):
    increasing = [1] * N  # 记录从左到右的最长递增子序列
    decreasing = [1] * N  # 记录从右到左的最长递减子序列

    # 计算从左到右的最长递增子序列
    for i in range(1, N):
        for j in range(i):
            if heights[i] > heights[j]:
                increasing[i] = max(increasing[i], increasing[j] + 1)

    # 计算从右到左的最长递减子序列
    for i in range(N - 2, -1, -1):
        for j in range(N - 1, i, -1):
            if heights[i] > heights[j]:
                decreasing[i] = max(decreasing[i], decreasing[j] + 1)

    # 找到同一位置既在递增子序列中又在递减子序列中的最大值
    max_biotonic = 0
    for i in range(N):
        max_biotonic = max(max_biotonic, increasing[i] + decreasing[i] - 1)

    # 计算最少需要出列的人数
    return N - max_biotonic

# 读取输入
N = int(input())
heights = list(map(int, input().split()))

# 输出结果
result = min_removal_for_chorus(N, heights)
print(result)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值