传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2243
考研路茫茫——单词情结
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5873 Accepted Submission(s): 1970
一天,Lele在某本单词书上看到了一个根据词根来背单词的方法。比如"ab",放在单词前一般表示"相反,变坏,离去"等。
于是Lele想,如果背了N个词根,那这些词根到底会不会在单词里出现呢。更确切的描述是:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。
比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。
这个只是很小的情况。而对于其他复杂点的情况,Lele实在是数不出来了,现在就请你帮帮他。
每组数据占两行。
第一行有两个正整数N和L。(0<N<6,0<L<2^31)
第二行有N个词根,每个词根仅由小写字母组成,长度不超过5。两个词根中间用一个空格分隔开。
由于结果可能非常巨大,你只需要输出单词总数模2^64的值。
2 3 aa ab 1 2 a
104 52
做这个题之前一定要做做poj2778,在搞定poj2778后这个题就迎刃而解了。假设已经会了Poj2778.那么这个题让求的是长度在L以内的字符包含至少一个模式串的方案数是多少。先看总的方案数是多少呢?长度为1的话有26种,长度为2的话有26^2,以此类推长度为L的有26^L种,那么长度L以内的有26+26^2+..+26^L(一个位置有26中放法)种。那么不满足条件的有多少呢?也就是求长度为L以内的有多少种方案使得不会有模式串出现。那么答案就是总的-不符合的。现在来求长度为L以内的不会有模式串出现的方案数。根据poj2778可以求出长度为L的不符合的,而这让求长度是L以内的。现在给出一个矩阵:
| A 1 |
| 0 1 |
看到上面这个矩阵,这个矩阵的平方和三次方是多少呢?
| A 1 | | A 1 | => | A^2 1+A | | A 1 | => | A^3 1+A+A^2 |
| 0 1 | | 0 1 | => | 0 1 | | 0 1 | => | 0 1 |
应该可以看出来这个矩阵的L+1次方后会得到1+A+A^2+A^3+...+A^L
那么现在就好说了,把A换成26就会得到26+26^2+..+26^L的和,把换成矩阵就会得到长度是L以内的不含模式串的方案数。当然求这个矩阵是用矩阵快速幂来求。
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long LL;
struct node
{
int is,id;
node *fail;
node *nex[27];
};
char s[10];
node T[1000],*root;
int idx;
struct node* Init()
{
node *p;
p = &T[idx];
p->fail = NULL;
for(int i=0;i<26;i++)
p->nex[i]=NULL;
p->is = 0;
p->id = idx++;
return p;
};
void build(char *ss)
{
int len = strlen(ss);
node *p = root;
for(int i=0;i<len;i++)
{
int x = ss[i] - 'a';
if(p->nex[x]==NULL)
p->nex[x] = Init();
p = p->nex[x];
}
p->is = 1;
}
void getfail()
{
queue<node*>q;
q.push(root);
node *p;
while(!q.empty())
{
p = q.front();
q.pop();
for(int i=0;i<26;i++)
{
if(p->nex[i]==NULL)
{
if(p==root)
{
p->nex[i] = root;
}
else p->nex[i] = p->fail->nex[i];
}
else
{
if(p==root)
{
p->nex[i]->fail = root;
}
else
{
p->nex[i]->fail = p->fail->nex[i];
if(p->fail->nex[i]->is)
p->nex[i]->is = 1;
}
q.push(p->nex[i]);
}
}
}
}
struct Matrix
{
LL a[100][100];
Matrix()
{
memset(a,0,sizeof(a));
}
void init()
{
for(int i=0;i<idx;i++)
for(int j=0;j<idx;j++)
a[i][j] = i==j;
}
Matrix operator + (const Matrix &B)const
{
Matrix C;
for(int i=0;i<idx;i++)
{
for(int j=0;j<idx;j++)
{
C.a[i][j]=a[i][j]+B.a[i][j];
}
}
return C;
}
Matrix operator * (const Matrix &B)const
{
Matrix C;
for(int i=0;i<idx;i++)
{
for(int k=0;k<idx;k++)
{
for(int j=0;j<idx;j++)
{
C.a[i][j]+=a[i][k]*B.a[k][j];
}
}
}
return C;
}
Matrix operator ^ (const LL &t)const
{
Matrix A=(*this),res;
res.init();
LL p = t;
while(p)
{
if(p&1)res=res*A;
A=A*A;
p>>=1;
}
return res;
}
};
int main()
{
int n;
LL L;
while(~scanf("%d%llu",&n,&L))
{
idx = 0;
root = Init();
for(int i=1;i<=n;i++)
{
scanf("%s",s);
build(s);
}
getfail();
Matrix re,ans;
for(int i=0;i<idx;i++)
{
for(int j=0;j<26;j++)
{
node *son = T[i].nex[j];
if(!T[i].is&&!son->is)
{
ans.a[i][son->id]++;
}
}
}
idx=idx+1;
for(int i=0;i<idx;i++)
ans.a[idx-1][i]=0;
for(int i=0;i<idx;i++)
ans.a[i][idx-1]=1;
re = ans^(L+1);
LL sum = 0,num = 0;
// for(int i=0;i<idx-1;i++)
// {
// sum+=re.a[i][idx-1];
// }
sum = re.a[0][idx-1];
Matrix dd,ff;
idx = 2;
dd.a[0][0]=26;
dd.a[0][1]=1;
dd.a[1][0]=0;
dd.a[1][1]=1;
ff = dd^(L+1);
num = ff.a[0][1];
//cout<<num<<" "<<sum<<endl;
//cout<<26+26*26+26*26*26<<endl;
LL MOD = 1;
for(int i=1;i<=64;i++)MOD = MOD *2;
num = (num+MOD)-sum;
printf("%llu\n",num);
}
return 0;
}