矩阵的 Frobenius 范数及其求偏导法则

矩阵的迹求导法则
矩阵的迹求导法则
矩阵的frobenius范数及其求偏导法则-1
矩阵的frobenius范数及其求偏导法则-2

1. 复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix
3
4
2. x is a column vector, A is a matrix

d(Ax)/dx=A
d(xTA)/dxT=A
d(xTA)/dx=AT
d(xTAx)/dx=xT(AT+A)

3. Practice:
5
4. 矩阵求导计算法则
求导公式(撇号为转置):
Y = A * X –> DY/DX = A’
Y = X * A –> DY/DX = A
Y = A’ * X * B –> DY/DX = A * B’
Y = A’ * X’ * B –> DY/DX = B * A’
乘积的导数:
d(f*g)/dx=(df’/dx)g+(dg/dx)f’

一些结论

  1. 矩阵Y对标量x求导:
    相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了
    Y = [y(ij)]–> dY/dx = [dy(ji)/dx]
  2. 标量y对列向量X求导:
    注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量
    y = f(x1,x2,..,xn) –> dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)’
  3. 行向量Y’对列向量X求导:
    注意1×M向量对N×1向量求导后是N×M矩阵。
    将Y的每一列对X求偏导,将各列构成一个矩阵。
    重要结论:
    dX’/dX =I
    d(AX)’/dX =A’
  4. 列向量Y对行向量X’求导:
    转化为行向量Y’对列向量X的导数,然后转置。
    注意M×1向量对1×N向量求导结果为M×N矩阵。
    dY/dX’ =(dY’/dX)’
  5. 向量积对列向量X求导运算法则:
    注意与标量求导有点不同。
    d(UV’)/dX =(dU/dX)V’ + U(dV’/dX)
    d(U’V)/dX =(dU’/dX)V + (dV’/dX)U’
    重要结论:
    d(X’A)/dX =(dX’/dX)A + (dA/dX)X’ = IA + 0X’ = A
    d(AX)/dX’ =(d(X’A’)/dX)’ = (A’)’ = A
    d(X’AX)/dX =(dX’/dX)AX + (d(AX)’/dX)X = AX + A’X
  6. 矩阵Y对列向量X求导:
    将Y对X的每一个分量求偏导,构成一个超向量。
    注意该向量的每一个元素都是一个矩阵。
  7. 矩阵积对列向量求导法则:
    d(uV)/dX =(du/dX)V + u(dV/dX)
    d(UV)/dX =(dU/dX)V + U(dV/dX)
    重要结论:
    d(X’A)/dX =(dX’/dX)A + X’(dA/dX) = IA + X’0 = A
  8. 标量y对矩阵X的导数:
    类似标量y对列向量X的导数,
    把y对每个X的元素求偏导,不用转置。
    dy/dX = [Dy/Dx(ij) ]
    重要结论:
    y = U’XV= ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] =UV’
    y = U’X’XU 则dy/dX = 2XUU’
    y =(XU-V)’(XU-V) 则 dy/dX = d(U’X’XU - 2V’XU + V’V)/dX = 2XUU’ - 2VU’ +0 = 2(XU-V)U’
  9. 矩阵Y对矩阵X的导数:
    将Y的每个元素对X求导,然后排在一起形成超级矩阵。
    10.乘积的导数
    d(f*g)/dx=(df’/dx)g+(dg/dx)f’
    结论
    d(x’Ax)=(d(x”)/dx)Ax+(d(Ax)/dx)(x”)=Ax+A’x (注意:”是表示两次转置)

矩阵求导 属于 矩阵计算,应该查找 Matrix Calculus 的文献:
http://www.psi.toronto.edu/matrix/intro.html#Intro
http://www.psi.toronto.edu/matrix/calculus.html
http://www.stanford.edu/~dattorro/matrixcalc.pdf
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf
http://www4.ncsu.edu/~pfackler/MatCalc.pdf
http://center.uvt.nl/staff/magnus/wip12.pdf

<think>嗯,矩阵范数求导,这个问题看起来有点挑战性。首先,我需要回忆一下矩阵范数的定义和常见的类型。矩阵范数有很多种,比如Frobenius范数、谱范数、核范数等等。不同的范数可能有不同的求导方式,所以得先确定用户指的是哪一种。不过通常在没有特别说明的情况下,可能默认是Frobenius范数,因为它在优化问题中比较常见,比如在机器学习中的矩阵分解或正则化项中。 接下来,我得想一下如何对矩阵变量进行求导矩阵求导涉及到将数表示为与原矩阵同维的矩阵,每个元素对应位置的数。不过这里可能需要用到矩阵微积分中的一些规则,比如标量对矩阵数,结果应该是一个矩阵,其每个元素是标量对原矩阵对应元素的。 假设我们考虑Frobenius范数,对于一个矩阵A,其Frobenius范数是所有元素平方和的平方根,即||A||_F = sqrt(sum_{i,j} A_{i,j}^2)。如果我们要对这个范数求导,比如d||A||_F / dA,可能需要先处理平方后的形式,因为平方后的范数更容易求导。比如,d(||A||_F^2)/dA 就是2A,因为每个元素的平方数是2A_{i,j},所以整个矩阵就是2A。然后再通过链式法则,考虑平方根的数,即如果f(A) = sqrt(g(A)),那么f’(A) = (1/(2*sqrt(g(A)))) * g’(A)。所以d||A||_F/dA应该是 (1/(||A||_F)) * A,前提是A不是零矩阵。 不过这里可能需要更严谨的推。比如,假设我们有函数f(A) = ||A||_F,那么f(A) = sqrt{tr(A^T A)},因为Frobenius范数等于矩阵A的迹的平方根。因此,数df/dA就是 (1/(2*sqrt{tr(A^T A)})) * d(tr(A^T A))/dA。而tr(A^T A)对A的数应该是2A,所以最后结果确实是A / ||A||_F,当||A||_F ≠ 0时。 如果是其他范数,比如谱范数(最大奇异值),那么求导可能更复杂,因为涉及到奇异值分解。这时候可能需要用更高级的矩阵微积分技巧,比如使用链式法则和子梯度,尤其是当矩阵有重复的最大奇异值时,数可能不唯一,变成子梯度的形式。不过用户可能主要关心Frobenius范数的情况,所以先重点考虑这个。 另外,用户可能想知道在优化问题中如何处理矩阵范数数,比如在损失函数中加入正则化项时,如何计算梯度。例如,若目标函数是||X||_F^2,那么梯度就是2X,这在实际应用中很常见,比如岭回归中的权重衰减。 但用户的问题更广泛,是“矩阵范数求导”,所以可能需要更一般性的介绍,涵盖不同的范数类型,并指出它们的求导方法有何不同。同时,可能需要提到矩阵变量的函数的数定义,以及如何利用矩阵微分来进行计算。 例如,对于L1范数(元素绝对值之和),数会是符号函数,但由于矩阵的L1范数可能有不同的定义,需要确认是否指元素绝对值之和,还是其他形式。如果是元素绝对值之和,那么矩阵中的每个元素是对应位置的符号,但要注意在零点处不可。 不过矩阵范数的L1通常可能指的是列绝对值和的最大值,或者行绝对值和的最大值,这需要具体情况具体分析。这时候数可能涉及到对最大值对应的列或行的处理,类似于向量无穷范数数,这时候在最大值点处可能数存在子梯度。 总结来说,矩阵范数求导需要根据具体的范数类型来选择合适的求导方法,常见的Frobenius范数相对简单,而其他范数可能涉及更复杂的分析,如奇异值分解或子梯度。在回答时需要分情况讨论,并给出具体的例子和步骤,帮助用户理解不同情况下的处理方法。</think>矩阵范数求导矩阵微积分中的重要内容,在优化、机器学习等领域有广泛应用。下面从常见矩阵范数类型入手,逐步介绍求导方法: --- ### 一、Frobenius范数求导 **定义**:对矩阵$A \in \mathbb{R}^{m \times n}$,其Frobenius范数为: $$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$ **求导步骤**: 1. **平方处理**:先对平方形式求导,简化计算: $$||A||_F^2 = \text{tr}(A^T A)$$ 2. **数计算**: $$\frac{\partial ||A||_F^2}{\partial A} = 2A$$ 3. **链式法则**:对原范数应用链式法则: $$\frac{\partial ||A||_F}{\partial A} = \frac{A}{||A||_F} \quad (\text{当 } ||A||_F \neq 0)$$ --- ### 二、谱范数(2-范数)的求导 **定义**:矩阵的最大奇异值,即: $$||A||_2 = \sigma_{\text{max}}(A)$$ **求导方法**: 1. **奇异值分解**:设$A = U \Sigma V^T$,最大奇异值为$\sigma_1$,对应左右奇异向量$u_1, v_1$。 2. **数公式**: $$\frac{\partial ||A||_2}{\partial A} = u_1 v_1^T$$ *当$\sigma_1$唯一时成立,否则需考虑子梯度集合。* --- ### 三、核范数(迹范数)的求导 **定义**:所有奇异值之和: $$||A||_* = \sum_{i=1}^r \sigma_i(A) \quad (r为A的秩)$$ **求导步骤**: 1. **奇异值分解**:$A = U \Sigma V^T$。 2. **数公式**: $$\frac{\partial ||A||_*}{\partial A} = U V^T$$ *假设所有奇异值非零且无重复,否则需调整。* --- ### 四、一般矩阵范数求导方法 1. **矩阵微分**:将标量函数$f(A)$展开为微分形式$df = \text{tr}(B^T dA)$,则$\frac{\partial f}{\partial A} = B$。 2. **链式法则**:复合函数需分解为基本运算(如迹、行列式等)逐步求导。 3. **子梯度处理**:当范数不可时(如存在多个最大奇异值),需使用子梯度集合。 --- ### 五、应用示例 **问题**:优化问题中最小化$f(X) = ||X||_F^2$,梯度。 **解**: 1. 目标函数展开: $$f(X) = \text{tr}(X^T X)$$ 2. 计算微分: $$df = \text{tr}(2X^T dX)$$ 3. 提取梯度: $$\frac{\partial f}{\partial X} = 2X$$ --- ### 六、注意事项 1. **维度匹配**:数结果需与原矩阵维度一致。 2. **特殊点处理**:如$A=0$时Frobenius范数不可。 3. **数值稳定性**:实际计算中需避免除以零(如对$||A||_F$分母加小常数)。 通过以上步骤,可根据具体范数类型选择合适的求导方法。实际应用中,Frobenius范数因可性良好且计算简单,常被优先使用。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值