OpenCV12开操作_闭操作_形态学梯度_顶帽_黑帽

/*
by txwtech
开操作- open
先腐蚀后膨胀
可以去掉小的对象,假设对象是前景色,背景是黑色


闭操作- close
先膨胀后腐蚀(bin2)
可以填充小的洞(fill hole),假设对象是前景色,背景是黑色


形态学梯度- Morphological Gradient
膨胀减去腐蚀
又称为基本梯度(其它还包括-内部梯度、方向梯度)

顶帽 – top hat
顶帽 是原图像与开操作之间的差值图像

黑帽 – black hat
黑帽是闭操作图像与源图像的差值图像

API:
morphologyEx(src, dest, CV_MOP_BLACKHAT, kernel);
- Mat src – 输入图像
- Mat dest – 输出结果
- int OPT – CV_MOP_OPEN/ CV_MOP_CLOSE/ CV_MOP_GRADIENT / CV_MOP_TOPHAT/ CV_MOP_BLACKHAT 形态学操作类型
Mat kernel 结构元素
int Iteration 迭代次数,默认是1

*/

/*
by txwtech
开操作- open
先腐蚀后膨胀
可以去掉小的对象,假设对象是前景色,背景是黑色


闭操作- close
先膨胀后腐蚀(bin2)
可以填充小的洞(fill hole),假设对象是前景色,背景是黑色


形态学梯度- Morphological Gradient
膨胀减去腐蚀
又称为基本梯度(其它还包括-内部梯度、方向梯度)

顶帽 – top hat
顶帽 是原图像与开操作之间的差值图像

黑帽 – black hat
黑帽是闭操作图像与源图像的差值图像

API:
morphologyEx(src, dest, CV_MOP_BLACKHAT, kernel);
- Mat src – 输入图像
- Mat dest – 输出结果
- int OPT – CV_MOP_OPEN/ CV_MOP_CLOSE/ CV_MOP_GRADIENT / CV_MOP_TOPHAT/ CV_MOP_BLACKHAT 形态学操作类型
Mat kernel 结构元素
int Iteration 迭代次数,默认是1



*/
#include <opencv2\opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;

int main(int argc, char *argv[])
{
	Mat src;
	Mat src_dog;
	Mat dst2;
	Mat dst_conver;
	src = imread("E:\\pictures\\腐蚀sample.jpg",CV_LOAD_IMAGE_GRAYSCALE);
	src_dog = imread("E:\\pictures\\dog1.jpg", CV_LOAD_IMAGE_COLOR);
	if (!src.data)
	{
		printf("failed to load imags");
		return -1;
	}
	namedWindow("original_img",CV_WINDOW_AUTOSIZE);
	imshow("original_img",src);

	int height = src.rows;
	int width = src.cols;
	for (int row = 0; row < height; row++)
	{
		for (int col = 0; col < width; col++)
		{
			int gray_value = src.at<uchar>(row,col);
			src.at<uchar>(row, col) = 255 - gray_value;//黑白颜色反色操作
		}
	}
	src.copyTo(dst_conver);//复制图像
	imwrite("blk_bg_sample.jpg",src);//保存图像
	namedWindow("原图",CV_WINDOW_AUTOSIZE);
	imshow("原图",src);

	Mat kernel = getStructuringElement(MORPH_RECT,Size(13,13),Point(-1,-1));
	//morphologyEx(src,dst2,CV_MOP_BLACKHAT,kernel);
	morphologyEx(src, dst2, CV_MOP_OPEN, kernel);//先腐蚀后膨胀
	//morphologyEx(src, dst2, CV_MOP_CLOSE, kernel);//先膨胀后腐蚀
	//morphologyEx(src, dst2, CV_MOP_TOPHAT, kernel);//顶帽 是原图像与开操作之间的差值图像

	namedWindow("先腐蚀后膨胀", CV_WINDOW_AUTOSIZE);
	imshow("先腐蚀后膨胀", dst2);


	namedWindow("原图2", CV_WINDOW_AUTOSIZE);
	imshow("原图2", src_dog);
	morphologyEx(src_dog, dst2, CV_MOP_GRADIENT, kernel);//形态学梯度
	namedWindow("形态学梯度", CV_WINDOW_AUTOSIZE);
	imshow("形态学梯度", dst2);
	waitKey(0);
	return 0;
}

顶帽:



#include <opencv2\opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;

int main(int argc, char *argv[])
{
	Mat src;
	Mat src_dog;
	Mat dst2;
	Mat dst_conver;
	src = imread("E:\\pictures\\blk_bg_sample.jpg", CV_LOAD_IMAGE_GRAYSCALE);	
	if (!src.data)
	{
		printf("failed to load imags");
		return -1;
	}
	namedWindow("original_img", CV_WINDOW_AUTOSIZE);
	imshow("original_img", src);
	Mat kernel = getStructuringElement(MORPH_RECT, Size(13, 13), Point(-1, -1));	
   morphologyEx(src, dst2, CV_MOP_TOPHAT, kernel);//顶帽 是原图像与开操作之间的差值图像	
	namedWindow("顶帽", CV_WINDOW_AUTOSIZE);
	imshow("顶帽", dst2);
	waitKey(0);
	return 0;
}

黑帽:



#include <opencv2\opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;

int main(int argc, char *argv[])
{
	Mat src;
	Mat src2;
	Mat dst2;
	Mat dst3;
	//src = imread("E:\\pictures\\blk_bg_sample.jpg", CV_LOAD_IMAGE_GRAYSCALE);	
	src = imread("E:\\pictures\\white_bg_sample.jpg", CV_LOAD_IMAGE_GRAYSCALE);
	if (!src.data)
	{
		printf("failed to load imags");
		return -1;
	}
	namedWindow("原图", CV_WINDOW_AUTOSIZE);
	imshow("原图", src);
	Mat kernel = getStructuringElement(MORPH_RECT, Size(13, 13), Point(-1, -1));

	morphologyEx(src, dst2, CV_MOP_CLOSE, kernel); //黑帽是闭操作图像与源图像的差值图像
	//namedWindow("闭操作", CV_WINDOW_AUTOSIZE);
	//imshow("闭操作", dst2);
   morphologyEx(src, dst2,CV_MOP_TOPHAT , kernel);//顶帽 是原图像与开操作之间的差值图像	
   namedWindow("顶帽", CV_WINDOW_AUTOSIZE);
   imshow("顶帽", dst2);
   morphologyEx(src, dst3, CV_MOP_BLACKHAT, kernel); //黑帽是闭操作图像与源图像的差值图像
	namedWindow("黑帽", CV_WINDOW_AUTOSIZE);
	imshow("黑帽", dst3);
	waitKey(0);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

txwtech笛克特科

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值