洛谷P2240 Java解法

题目出处点这里
在这里插入图片描述思路:构造一个金币类,按性价比从小到大进行排序即可,不过要注意可能有全部金币都取完了但是背包还没满的情况,此时直接输出maxPrice即可

代码如下(很好理解):

package greedy;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Scanner;

public class P2240 {

	static ArrayList<coin> list = new ArrayList<coin>();
	static double maxPrice = 0;
	static double curWeight = 0;
	static int index;

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		double N = sc.nextInt();
		double T = sc.nextInt();
		for (int i = 0; i < N; i++) {
			list.add(new coin(sc.nextInt(), sc.nextInt()));
		}
		//这里需要自己写一个比较器,只对coin对象的xjb进行由大到小的排序
		Collections.sort(list, new Comparator<coin>() {
			public int compare(coin a, coin b) {
				double s = (b.xjb - a.xjb);
				if (s > 0) {
					return 1;
				} else if (s == 0) {
					return 0;
				} else {
					return -1;
				}
			}
		});
		for (int i = 0; i < N; i++) {
			if (curWeight + list.get(i).w > T) {
				break;
			}
			curWeight = curWeight + list.get(i).w;
			maxPrice = maxPrice + list.get(i).p;
			index = i;
		}

		double restWeight = T - curWeight;// 剩余的容量

		if (restWeight != 0 && index + 1 < N) {
			maxPrice = maxPrice + restWeight * list.get(index + 1).p / list.get(index + 1).w;
			System.out.printf("%.2f", maxPrice);
		} else {// 注意当index + 1 == N 时,就说明东西都放进背包里了,此时有可能背包没放满,也有可能刚刚放满
			System.out.printf("%.2f", maxPrice);
		}

	}
}

class coin {

	double w;// 重量
	double p;// 价值
	double xjb;// 性价比

	// 构造器
	public coin(double w, double p) {
		this.w = w;
		this.p = p;
		this.xjb = p / w;
	}
}

洛谷P2240部分背包问题是一个经典的动态规划问题。问题描述是这样的:给定n种物品和一个容量为V的背包。每种物品都有自己的重量w[i]和价值v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。 这里的“部分背包”意味着我们可以选择物品的一部分放入背包中。这里给出一个C++的基本解法示例: ```cpp #include <iostream> #include <algorithm> using namespace std; int dp[1010][1010]; // dp[i][j] 表示前i件物品在不超过j重量的情况下可以获得的最大价值 int main() { int n, V; cin >> n >> V; for(int i = 0; i <= n; ++i) { for(int j = 0; j <= V; ++j) { dp[i][j] = 0; // 初始化dp数组为0 } } for(int i = 1; i <= n; ++i) { int w, v; cin >> w >> v; for(int j = 1; j <= V; ++j) { if(j >= w) { // 如果当前物品重量不超过背包容量,考虑取与不取两种情况,取最大值 dp[i][j] = max(dp[i-1][j], dp[i-1][j-w] + v); } else { // 如果当前物品重量超过背包容量,则不能取这个物品 dp[i][j] = dp[i-1][j]; } } } cout << dp[n][V] << endl; // 输出最大价值 return 0; } ``` 这段代码首先初始化一个二维数组dp,其中dp[i][j]表示考虑前i件物品,当背包容量为j时能够得到的最大价值。之后,通过双层循环,从后往前遍历所有物品,并计算在不超过背包容量的情况下,每种物品的取与不取的最大价值,最终得到的最大价值存储在dp[n][V]中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值