卡码网58.区间和

题目链接 (opens new window)

题目描述

给定一个整数数组 Array,请计算该数组在每个指定区间内元素的总和。

输入描述

第一行输入为整数数组 Array 的长度 n,接下来 n 行,每行一个整数,表示数组的元素。随后的输入为需要计算总和的区间,直至文件结束。

输出描述

输出每个指定区间内元素的总和。

输入示例

输入示例

5
1
2
3
4
5
0 1
1 3

输出示例

3
9

数据范围:

0 < n <= 100000

思路

本题我们来讲解 数组 上常用的解题技巧:前缀和

首先来看本题,我们最直观的想法是什么?

那就是给一个区间,然后 把这个区间的和都累加一遍不就得了,是一道简单不能再简单的题目。

代码如下:

#include <iostream>
#include <vector>
using namespace std;
int main() {
    int n, a, b;
    cin >> n;
    vector<int> vec(n);
    for (int i = 0; i < n; i++) cin >> vec[i];
    while (cin >> a >> b) {
        int sum = 0;
        // 累加区间 a 到 b 的和
        for (int i = a; i <= b; i++) sum += vec[i];
        cout << sum << endl;
    }
} 

代码一提交,发现超时了…
来举一个极端的例子,如果我查询m次,每次查询的范围都是从0 到 n - 1

那么该算法的时间复杂度是 O(n * m) m 是查询的次数

如果查询次数非常大的话,这个时间复杂度也是非常大的。

接下来我们来引入前缀和,看看前缀和如何解决这个问题。

前缀和的思想是重复利用计算过的子数组之和,从而降低区间查询需要累加计算的次数。

#前缀和

前缀和 在涉及计算区间和的问题时非常有用

前缀和的思路其实很简单,我给大家举个例子很容易就懂了。

例如,我们要统计 vec[i] 这个数组上的区间和。

我们先做累加,即 p[i] 表示 下标 0 到 i 的 vec[i] 累加 之和

如果,我们想统计,在vec数组上 下标 2 到下标 5 之间的累加和,那是不是就用 p[5] - p[1] 就可以了。

为什么呢?

p[1] = vec[0] + vec[1];

p[5] = vec[0] + vec[1] + vec[2] + vec[3] + vec[4] + vec[5];

p[5] - p[1] = vec[2] + vec[3] + vec[4] + vec[5];

这不就是我们要求的 下标 2 到下标 5 之间的累加和吗
p[5] - p[1] 就是 红色部分的区间和。

而 p 数组是我们之前就计算好的累加和,所以后面每次求区间和的之后 我们只需要 O(1) 的操作。

特别注意: 在使用前缀和求解的时候,要特别注意 求解区间。

如上图,如果我们要求 区间下标 [2, 5] 的区间和,那么应该是 p[5] - p[1],而不是 p[5] - p[2]。

很多录友在使用前缀和的时候,分不清前缀和的区间,建议画一画图,模拟一下 思路会更清晰

本题C++代码如下:

#include <iostream>
#include <vector>
using namespace std;
int main() {
    int n, a, b;
    cin >> n;
    vector<int> vec(n);
    vector<int> p(n);
    int presum = 0;
    for (int i = 0; i < n; i++) {
        cin >> vec[i];
        presum += vec[i];
        p[i] = presum;
    }

    while (cin >> a >> b) {
        int sum;
        if (a == 0) sum = p[b];
        else sum = p[b] - p[a - 1];
        cout << sum << endl;
    }
}

C++ 代码 面对大量数据 读取 输出操作,最好用scanf 和 printf,耗时会小很多:

#include <iostream>
#include <vector>
using namespace std;
int main() {
    int n, a, b;
    cin >> n;
    vector<int> vec(n);
    vector<int> p(n);
    int presum = 0;
    for (int i = 0; i < n; i++) {
        scanf("%d", &vec[i]);
        presum += vec[i];
        p[i] = presum;
    }

    while (~scanf("%d%d", &a, &b)) {
        int sum;
        if (a == 0) sum = p[b];
        else sum = p[b] - p[a - 1];
        printf("%d\n", sum);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tyb333333

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值