一、对于一个均匀的样本,采用 传输强度方程(TIE) 方法求解相位时,如果两次对焦位置都在样本内部,并且样本在这些位置的相位梯度变化不显著,那么选择不同的距离 z z z进行多次测量,恢复得到的相位应该是几乎一致的。
以下是原因和关键点:
-
TIE方程基础
TIE 方程的核心是通过分析样本强度分布的变化(沿光轴 z z z的变化)来恢复相位分布。假设系统满足平面波近似,TIE方程形式如下:
∇ 2 ϕ ( x , y ) = − 1 I 0 ∇ ⋅ ( I 0 ∇ I ( x , y ) ) , \nabla^2 \phi(x, y) = -\frac{1}{I_0} \nabla \cdot \left( I_0 \nabla I(x, y) \right), ∇2ϕ(x,y)=−I01∇⋅(I0∇I(x,y)),
其中:
- ϕ ( x , y ) \phi(x, y) ϕ(x,y)是相位分布;
- I 0 I_0 I0是参考强度;
- I ( x , y ) I(x, y) I(x,y)是样本平面强度分布。 -
均匀样本的特点
- 均匀样本的相位梯度非常小或为零;
- 在样本不同内部平面(不同 z z z)测得的强度分布变化很小,因此通过 TIE 恢复的相位结果不会随 z z z明显改变。
-
不同 z z z的测量对相位恢复的影响
- 对于均匀样本,尽管 z z z的选取会影响强度分布的变化,但在理论上这种变化非常小且对相位恢复结果的影响可以忽略;
- 假如采集过程中的噪声和数值计算误差可以忽略,恢复的相位应该几乎一致。
-
潜在的误差来源
- 噪声:如果测量噪声显著,特别是在强度对 z z z的变化较小时,可能导致恢复相位存在细微差异;
- 样本非完全均匀:如果样本内部存在微小的不均匀性(例如折射率的波动),恢复的相位可能对 z z z有一定依赖;
- 光学系统的缺陷:例如,物镜的离焦误差或照明系统的不均匀性可能影响结果。
结论
对于一个 完全均匀的样本,两次对焦都在样本内部时,不同 z z z距离下进行多次测量所恢复的相位结果理论上应该一致。如果结果出现较大差异,建议检查以下因素:
- 是否存在测量噪声;
- 样本是否完全均匀;
- 光学系统是否存在系统性误差。
二、在均匀介质中,如果相位变化是均匀的(例如 ϕ ( z ) \phi(z) ϕ(z)仅仅是某种常数或线性变化),则强度 I I I是恒定的,与相位变化无关。
光强度与相位关系
光的强度通常与电场的振幅平方成正比。假设光波的电场表示为:
E
(
x
,
t
)
=
E
0
e
i
(
k
z
−
ω
t
+
ϕ
(
z
)
)
,
E(x, t) = E_0 e^{i(kz - \omega t + \phi(z))},
E(x,t)=E0ei(kz−ωt+ϕ(z)),
其中:
-
E
0
E_0
E0是光波的初始振幅;
-
k
k
k是波数,决定光波的传播特性;
-
ω
\omega
ω是角频率;
-
ϕ
(
z
)
\phi(z)
ϕ(z)是相位,通常与光在传播过程中的位置
z
z
z相关。
光的强度
I
I
I与电场的模平方有关,即:
I
(
x
,
z
)
∝
∣
E
(
x
,
z
)
∣
2
=
∣
E
0
∣
2
.
I(x, z) \propto |E(x, z)|^2 = |E_0|^2.
I(x,z)∝∣E(x,z)∣2=∣E0∣2.
这个表达式显示,如果相位变化是均匀的(例如
ϕ
(
z
)
\phi(z)
ϕ(z)仅仅是某种常数或线性变化),则强度
I
I
I是恒定的,与相位变化无关。
相位变化对强度的影响
在均匀介质中,光的相位是随传播距离而线性变化的,例如:
ϕ
(
z
)
=
k
z
+
常数项
.
\phi(z) = kz + \text{常数项}.
ϕ(z)=kz+常数项.
对于这种相位变化,光的强度通常不会消失,除非光波的振幅
E
0
E_0
E0受到其他因素(如衰减、散射等)的影响。
关于相位的指数项变为0
如果在某些特定情况下,光的相位项变为零(例如,某些波动相干现象),理论上可能会导致光的强度消失。一个常见的例子是相位失配,比如在干涉实验中,当两个相干光源的相位差为 π \pi π或整数倍 π \pi π时,两束光可能会互相抵消,强度变为零。这种现象通常发生在光波的相位变化引起干涉效应时,而不是在光在均匀介质中的传播过程中。
结论
- 在均匀介质中传播的光强度通常不会因为相位的微小变化而消失,除非有外界因素(如衰减、干涉等)影响光的传播。
- 相位的指数项不会在均匀介质中完全变成零,除非光波与其他波干涉相消,导致局部强度消失。这种现象通常与相位差有关,而非仅仅相位的变化。
三、什么时候相位的变化会让强度变成0呢?当两束光发生干涉时,强度可能变为零,可以很容易得到明暗相间的干涉条纹
当两束光发生干涉时,强度变为零的现象可以用波动叠加原理来解释。以下是详细的过程和物理原理。
1. 波动叠加原理
光波是电磁波,描述光波的电场可以表示为:
E
1
(
x
,
t
)
=
A
1
e
i
(
ω
t
−
k
x
+
ϕ
1
)
,
E_1(x, t) = A_1 e^{i(\omega t - kx + \phi_1)},
E1(x,t)=A1ei(ωt−kx+ϕ1),
E
2
(
x
,
t
)
=
A
2
e
i
(
ω
t
−
k
x
+
ϕ
2
)
,
E_2(x, t) = A_2 e^{i(\omega t - kx + \phi_2)},
E2(x,t)=A2ei(ωt−kx+ϕ2),
其中:
-
A
1
A_1
A1和
A
2
A_2
A2是两束光的振幅;
-
ϕ
1
\phi_1
ϕ1和
ϕ
2
\phi_2
ϕ2是两束光的初始相位;
-
ω
\omega
ω是角频率,
k
k
k是波数。
两束光的叠加场为:
E
total
=
E
1
+
E
2
.
E_{\text{total}} = E_1 + E_2.
Etotal=E1+E2.
使用欧拉公式
e
i
θ
=
cos
θ
+
i
sin
θ
e^{i\theta} = \cos\theta + i\sin\theta
eiθ=cosθ+isinθ,电场的实部才是物理意义上的场,因此叠加场的强度
I
I
I(与场幅度的平方成正比)为:
I
=
∣
E
total
∣
2
=
∣
A
1
e
i
ϕ
1
+
A
2
e
i
ϕ
2
∣
2
.
I = |E_{\text{total}}|^2 = |A_1 e^{i\phi_1} + A_2 e^{i\phi_2}|^2.
I=∣Etotal∣2=∣A1eiϕ1+A2eiϕ2∣2.
2. 计算强度
将电场叠加写展开:
E
total
=
A
1
e
i
ϕ
1
+
A
2
e
i
ϕ
2
.
E_{\text{total}} = A_1 e^{i\phi_1} + A_2 e^{i\phi_2}.
Etotal=A1eiϕ1+A2eiϕ2.
总强度可以用平方展开公式计算:
I
=
∣
A
1
e
i
ϕ
1
+
A
2
e
i
ϕ
2
∣
2
=
A
1
2
+
A
2
2
+
2
A
1
A
2
cos
(
ϕ
2
−
ϕ
1
)
,
I = |A_1 e^{i\phi_1} + A_2 e^{i\phi_2}|^2 = A_1^2 + A_2^2 + 2A_1A_2\cos(\phi_2 - \phi_1),
I=∣A1eiϕ1+A2eiϕ2∣2=A12+A22+2A1A2cos(ϕ2−ϕ1),
其中:
-
A
1
2
A_1^2
A12和
A
2
2
A_2^2
A22是各自单独的强度;
-
2
A
1
A
2
cos
(
ϕ
2
−
ϕ
1
)
2A_1A_2\cos(\phi_2 - \phi_1)
2A1A2cos(ϕ2−ϕ1)是干涉项,取决于两束光的相位差
Δ
ϕ
=
ϕ
2
−
ϕ
1
\Delta\phi = \phi_2 - \phi_1
Δϕ=ϕ2−ϕ1。
3. 强度为零的条件
光的强度
I
I
I为零的条件是:
A
1
2
+
A
2
2
+
2
A
1
A
2
cos
(
ϕ
2
−
ϕ
1
)
=
0.
A_1^2 + A_2^2 + 2A_1A_2\cos(\phi_2 - \phi_1) = 0.
A12+A22+2A1A2cos(ϕ2−ϕ1)=0.
只有在以下特殊情况下,这个等式成立:
- 两束光的振幅相等: A 1 = A 2 = A A_1 = A_2 = A A1=A2=A。
- 两束光的相位差满足条件: cos ( ϕ 2 − ϕ 1 ) = − 1 \cos(\phi_2 - \phi_1) = -1 cos(ϕ2−ϕ1)=−1,即 ϕ 2 − ϕ 1 = π + 2 n π \phi_2 - \phi_1 = \pi + 2n\pi ϕ2−ϕ1=π+2nπ( n n n为整数)。
在这种情况下:
I
=
A
2
+
A
2
−
2
A
2
=
0.
I = A^2 + A^2 - 2A^2 = 0.
I=A2+A2−2A2=0.
物理上,这意味着两束光的波峰和波谷在空间完全对齐(相位相差 π \pi π),导致它们相互抵消。
4. 干涉导致强度变化的机制
干涉的强度变化归因于相位叠加的结果:
- 当两束光的相位差
Δ
ϕ
=
0
,
2
π
,
4
π
,
…
\Delta\phi = 0, 2\pi, 4\pi, \dots
Δϕ=0,2π,4π,…时,叠加为最大强度(相长干涉):
I = A 1 2 + A 2 2 + 2 A 1 A 2 = ( A 1 + A 2 ) 2 . I = A_1^2 + A_2^2 + 2A_1A_2 = (A_1 + A_2)^2. I=A12+A22+2A1A2=(A1+A2)2. - 当两束光的相位差 Δ ϕ = π , 3 π , 5 π , … \Delta\phi = \pi, 3\pi, 5\pi, \dots Δϕ=π,3π,5π,…时,叠加为最小强度(相消干涉),在特殊情况下可以为零。
5. 物理直观解释
相位的叠加可以通过波的叠加图像来直观理解:
- 相长干涉:当波峰对齐时,波幅相加,光强达到最大。
- 相消干涉:当一个波的波峰与另一个波的波谷对齐时,波幅相互抵消,光强达到最小甚至为零。
这种干涉效应是相位的直接结果,并且是光波相干性的重要体现。
6. 总结
- 光强度变为零是因为两束光的波在空间上叠加时,相位差 Δ ϕ \Delta\phi Δϕ导致它们的波幅相互抵消(相消干涉)。
- 强度为零的条件是两束光具有相等的振幅,并且相位差为 π + 2 n π \pi + 2n\pi π+2nπ。
- 这种现象不仅限于光波,也适用于所有满足波动叠加原理的波(如声波、水波)。
四、回顾光的干涉–杨氏双缝干涉
条件和原理
-
相同光源的必要性
- 光波需要是相干光源,即两束光必须具有相同的频率(或波长)和固定的相位关系。
- 两束光的初始振幅也应该相同或接近,以便产生明显的干涉效果。
-
条纹的明暗机制
干涉条纹的形成依赖于两束光在空间的相位差 Δ ϕ \Delta \phi Δϕ。- 当两束光波的波峰叠加(相位差 Δ ϕ = 2 n π \Delta \phi = 2n\pi Δϕ=2nπ, n n n为整数)时,出现亮条纹(相长干涉)。
- 当两束光波的波峰与波谷叠加(相位差 Δ ϕ = ( 2 n + 1 ) π \Delta \phi = (2n+1)\pi Δϕ=(2n+1)π)时,出现暗条纹(相消干涉)。
总强度公式为:
I = A 1 2 + A 2 2 + 2 A 1 A 2 cos ( Δ ϕ ) , I = A_1^2 + A_2^2 + 2A_1A_2\cos(\Delta\phi), I=A12+A22+2A1A2cos(Δϕ),
这里的 cos ( Δ ϕ ) \cos(\Delta\phi) cos(Δϕ)决定了明暗条纹的周期性变化。
实验设计中的典型设置
-
杨氏双缝干涉
- 两束光通过一个屏幕上的两条窄缝后,在远处屏幕上叠加形成干涉条纹。
- 条纹间距
Δ
x
\Delta x
Δx可以用公式计算:
Δ x = λ L d , \Delta x = \frac{\lambda L}{d}, Δx=dλL,
其中:
- λ \lambda λ是光的波长;
- L L L是屏幕到双缝的距离;
- d d d是双缝间距。
-
分束干涉仪
使用分束器(如迈克尔逊干涉仪)将光分成两束,经过不同路径后再合并形成干涉条纹。通过调整光程差,可以观察到干涉条纹的变化。
条纹特性
-
条纹的亮暗对比
条纹的对比度由光的相干性决定。高相干性(如激光)会产生清晰的明暗条纹,而低相干性光源(如普通白炽灯)可能会导致条纹模糊甚至消失。 -
条纹的颜色(单色光与多色光)
- 使用单色光源(如激光),会看到清晰的等间距明暗条纹。
- 使用多色光源(如白光),可能看到彩色条纹,因为不同波长的光会产生不同的条纹间距,导致颜色叠加。
条纹形成的常见实验现象
-
全黑和全亮的区域
在某些区域,光波的相位差满足相消干涉,导致光强完全消失(全黑);而在另一些区域,相位差满足相长干涉,光强达到最大(全亮)。 -
条纹间距的调节
改变实验参数(如双缝间距 d d d或光的波长 λ \lambda λ),会影响条纹的密度和间距。
总结
- 用两个相同光源(或分束后的相干光源)进行干涉实验,在屏幕上可以观察到明暗相间的干涉条纹。
- 条纹的明暗交替取决于两束光的相位差,主要通过相长干涉和相消干涉形成。
- 实验中,条纹的清晰程度和规则性依赖于光源的相干性以及实验装置的精度。