沃尔什函数 与 沃尔什-哈达玛变换

本文深入探讨了沃尔什-哈达玛变换(WHT),包括其三种不同的排列方式,重点介绍了哈达玛排列及其在图像处理中的应用。文章详细解释了离散沃尔什-哈达玛变换(DWHT)和快速沃尔什变换(FWHT)的原理,以及它们在数据压缩和图像传输中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

图像处理中有许多变换常常选用方波信号或者它的变形。

沃尔什函数是一组矩形波,其取值为1和-1,非常便于计算机运算。

沃尔什函数有三种排列或编号方式以哈达玛排列最便于快速计算。

采用哈达玛排列的沃尔什函数进行的变换称为沃尔什-哈达玛变换,简称WHT或直称哈达玛变换。

 

沃尔什函数

沃尔什函数有三种不同的函数定义,但都可由拉德梅克函数构成。

1、按沃尔什排列的沃尔什函数

其中,R(k+1,t)是任意拉德梅克函数,g(i)是i的格雷码, g(i)k是此格雷码的第k位数。P为正整数,

 

取样后得到的按沃尔什排列的沃尔什函数矩阵:

2、按佩利(Paley)排列的沃尔什函数

其中,R(k+1,t)是任意拉德梅克函数,ik是自然二进制码的第k位数。P为正整数,。    

取样后得到的按佩利排列的沃尔什函数矩阵:     

 

3、按哈达玛(Hadamard)排列的沃尔什函数

其中,R(k+1,t)是任意拉德梅克函数,<ik>是倒序的二进制码的第k位数。P为正整数,。        

取样后得到的按哈达玛排列的沃尔什函数矩阵:

   

2^n阶哈达玛矩阵有如下形式:

 

可见,哈达玛矩阵的最大优点在于它具有简单的递推关系, 即高阶矩阵可用两个低阶矩阵的克罗内克积(Kronecker Product)求得。因此常采用哈达玛排列定义的沃尔什变换。

 

离散沃尔什-哈达玛变换(DWHT)

      

式中,[Hn]为N阶哈达玛矩阵。

由哈达玛矩阵的特点可知,沃尔什-哈达玛变换的本质上是将离散序列f(x)的各项值的符号按一定规律改变后,进行加减运算, 因此,它比采用复数运算的DFT和采用余弦运算的DCT要简单得多

从以上例子可看出,二维WHT具有能量集中的特性,而且原始数据中数字越是均匀分布,经变换后的数据越集中于矩阵的边角上。因此,二维WHT可用于压缩图像信息。

 

快速沃尔什变换(FWHT)

类似于FFT,WHT也有快速算法FWHT, 也可将输入序列f(x)按奇偶进行分组,分别进行WHT。FWHT的基本关系为:

WHT是将一个函数变换成取值为+1或-1的基本函数构成的级数,用它来逼近数字脉冲信号时要比FFT有利。同时, WHT只需要进行实数运算,存储量比FFT要少得多, 运算速度也快得多。因此,WHT在图像传输、 通信技术和数据压缩中被广泛使用。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值