Description
滑雪场坐落在FJ省西北部的若干座山上。
从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向。
你的团队负责每周定时清理雪道。你们拥有一架直升飞机,每次飞行可以从总部带一个人降落到滑雪场的某个地点,然后再飞回总部。从降落的地点出发,这个人可以顺着斜坡向下滑行,并清理他所经过的雪道。
由于每次飞行的耗费是固定的,为了最小化耗费,你想知道如何用最少的飞行次数才能完成清理雪道的任务。
Input
输入文件的第一行包含一个整数n (2 <= n <= 100) – 代表滑雪场的地点的数量。接下来的n行,描述1~n号地点出发的斜坡,第i行的第一个数为mi (0 <= mi < n) ,后面共有mi个整数,由空格隔开,每个整数aij互不相同,代表从地点i下降到地点aij的斜坡。每个地点至少有一个斜坡与之相连。
Output
输出文件的第一行是一个整数k – 直升飞机的最少飞行次数。
Solution
并不是上下界网络流。
不拆点不二分。
统计边数m。
建立
- 源点s到每个点的边,流量为inf,费用为0
- 每个点到汇点t的边,流量为inf,费用为0
- 按照原图建两条边,一条流量为1,费用为1;一条流量为inf,费用为0
然后直接跑最大费用最大流。
在做增广的过程中,一旦费用=m(即边都经过)就输出答案即当前流量。
很明显增广路费用有单调性,每次都会取当前的最优增广路。
那么我们能够保证在m条边都被遍历时增广次数最少。
那么建图应该就很明显了,s和t不用多说,原图的一条边记清理与否,另一条边就是原图。
Code
#include<bits/stdc++.h>
#define maxn 200000
#define inf INT_MAX
using namespace std;
struct edge{
int x,y,f,v,next;
}e[maxn];
bool vis[maxn];
int n,m,cnt=0,mc=0,mf=0;
int head[maxn],pre[maxn],sum[maxn];
inline void add(int a,int b,int c,int d){
e[cnt].x=a;
e[cnt].y=b;
e[cnt].f=c;
e[cnt].v=d;
e[cnt].next=head[a];
head[a]=cnt++;
}
inline void ad(int a,int b,int c,int d){
add(a,b,c,d);
add(b,a,0,-d);
}
void init() {
cnt=0;memset(head,-1,sizeof(head));
}
bool spfa(int s,int t){
queue<int>q;
for(int i=0;i<=t;i++){
sum[i]=inf;
pre[i]=-1;
vis[i]=0;
}
sum[s]=0;
vis[s]=1;
q.push(s);
while(!q.empty()){
int x=q.front(); q.pop(); vis[x]=0;
for(int i=head[x];i!=-1;i=e[i].next){
int y=e[i].y;
int f=e[i].f;
int v=e[i].v;
if(f>0&&sum[y]>sum[x]+v){
pre[y]=i;
sum[y]=sum[x]+v;
if(!vis[y]){
vis[y]=1;
q.push(y);
}
}
}
}
return sum[t]!=inf;
}
void ek(int s,int t){
mc=mf=0;
while(spfa(s,t)){
int minn=inf;
for(int i=pre[t];i!=-1;i=pre[e[i].x])
minn=min(minn,e[i].f);
mc+=sum[t]*minn;
mf+=minn;
for(int i=pre[t];i!=-1;i=pre[e[i].x]){
e[i].f-=minn;
e[i^1].f+=minn;
}
//cout<<mc<<" "<<mf<<endl;
if(mc==-m){
printf("%d",mf);
return;
}
}
}
int main(){
init();
int x,y;
scanf("%d",&n);
for(int i=1;i<=n;i++){
ad(0,i,inf,0);
ad(i,n+1,inf,0);
scanf("%d",&x);
for(int j=1;j<=x;j++){
scanf("%d",&y);
ad(i,y,1,-1);
ad(i,y,inf,0);
m++;
}
};
int s=0,t=n+1;
ek(s,t);
}
/*
10
1 2
1 3
1 4
2 10 5
1 6
1 7
0
1 9
1 4
0
*/