深度学习入门到精通+TensorFlow全程案例讲解
文章平均质量分 90
Lee达森
keep learning...
展开
-
深度学习从入门到精通+TensorFlow案例演示:Keras模型种类
由上往下执行,每一层的输出都是下一层的输入,所以,除了。)可以一边加神经层,一边显示模型汇总信息,这样有利于。杂的模型结构,允许非直线型的结构、共享的神经层及多输入。层都不需要设定,只要在第一个参数指定输出维度即可。先看一个简单的程序语法,除了第一层之外,每一层均。第一层要设定输入的维度外,其他层都不需要设定。)模型内可包含各式的神经层,简洁的写法是以。:提供较有弹性的结构,允许非直线型的结。:顺序型的模型,按神经层的排列顺序,)取得模型各神经层信息。)取得特定神经层信息。个输出,我们先不管模型用途,只。原创 2024-02-04 11:52:56 · 751 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:神经网络实践
超短程序,示范如何撰写手写阿拉伯数字的辨识,要证明改版。构,包括多个输入层或多个输出层,也允许分叉,后续用到时。值,避免受极端值影响,借以矫正过度拟合的现象。执行结果:随着执行周期次数的增加,准确率越来越高,且验。执行结果:随着执行周期次数的增加,损失越来越低,验证数。的数据,因此,建议读者自己利用绘图软件亲自撰写测试。函数,因此,要单纯以数学方法求解几乎不可能,只能以优化。方法求得近似解,但是,只有凸集合的数据集,才保证有全局。学,我们只知道它威力强大,但如何实现较佳的准确率,依旧。原创 2024-02-04 11:45:50 · 873 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:神经网络层
每条公式,层层串连,程序可能要很多个循环才能完成。各样的神经层函数,可以使用神经层组合神经网络的结构,用。与自动微分比较,这种方法程序更简单,只要设定模型结构、读到这里,读者应该会好奇如何使用更多的神经元和神经层,)建立模型:神经网络仅使用一个完全连接层,而且输入只。)建立模型:神经网络只有一个完全连接层,而且输入只有。一个神经元,即摄氏温度,输出只有一个神经元,即华氏温。所示,神经网络是多个神经层组合而成的,包括输入层。),其中隐藏层可以有任意多层。提供了数十种神经层,分成以下类别,用户可。原创 2024-02-04 11:32:30 · 811 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:自动微分
反向传导时,会更新每一层的权重,这时就会用到偏微分运。单,只要熟悉了运作的架构,后续复杂的模型就可以运用自。)定义训练函数:在自动微分中需重新计算损失函数值,)显示结果:回归线确实居于样本点中线。)产生随机数作为数据集,进行测试。函数两次,即能取得二阶导数。同样地,我们直接以实践代替长篇大论,请参阅。自动微分的功能,正向与反向传导变得非常简。)时,该变量会自动参与自动微。)时,如欲参与自动微分,则需。会被自动回收,用完之后,可使用。)多变量计算导数:各自使用。得每一个变量的梯度。原创 2024-01-28 14:25:26 · 787 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:TensorFlow架构与主要功能
量的张量运算,另外,在反向传导的过程中,要进行偏微分,因此,大多数的深度学习。学习的路径可以从简单的张量运算开始,再逐渐熟悉高阶的神。因此,它最底层的功能即支持各项张量的数据类型与。③官网也有提供指令,能够一次升级整个目录的所有程序,如。件,网站仍然在执行中,所以不代表该文件的资源会被回收,有很少数的非零元素,如果依一般的矩阵存储会非常浪费内。存,运算也是如此,因为大部分项目为零,不需浪费时间计。版的模式,但是要自行修改的地方较多,而且也缺乏。,兼顾简易性与效能,是深度学习最佳的入门套。原创 2024-01-28 14:11:45 · 834 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:神经网络求解
络的传导系统,希望通过层层解析,归纳出预测的结果,如图。生物神经网络中表层的神经元接收到外界信号,归纳分析后,层神经元进行相同的动作,再往后传导,最后传至大脑,大脑。神经元,因此,我们可以把第二层以后的神经元均视为一条回。分别偏微分,沿着切线(即梯度)逐步逼近,找到最佳解,这。路,于是,就沿路往下走,遇到叉路时,就选择坡度最大的叉。走,逼近最佳解,直到损失函数没有显著改善为止,这时我们。梯度其实就是斜率,单变量回归线的权重称为斜率,多变数回。率过大,梯度下降过程错过最小值,往函数左方逼近,造成损。原创 2024-01-28 14:02:32 · 818 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:线性规划
域,它是给定一些线性的限制条件,求取目标函数的最大值或。数值,比较并找到最大的数值即可。不过,深度学习的变数动。辄几百个,且神经层及神经元又很多,无法使用单形法求解,而是采取优化的方式,逐渐逼近找到近似解。述问题比较简单,凸集合的最佳解发生在可行解的顶点。),所以依上图,我们只要求每一个顶点对应的目标函。以上是简单的线性规划,还有其他的模型,如整数规划。包求解,定义目标函数及限制条件。用程序来解题,不介绍单形法的原理。)先画图,涂色区域(黄色)为可行解。),即符合限制条件的区域,如图。原创 2024-01-27 15:24:54 · 482 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:概率与统计
概率与统计统计是从数据所推衍出来的信息,包括一些描述统计量、概率分布等,如平均数、标准差等。而我们搜集到的数据统称为数据集(Dataset),它包括一些观察值()或案例Cases),即数据集的行,以及一些特征(Features)或称属性(Attributes),即数据集的字段。例如,要预测某市下一任市长,我们做一次问卷调查,相关定义如下。1)数据集:全部问卷调查数据。2)观察值:每张问卷。3)特征或属性:每一个问题,通常以X表示。4。原创 2024-01-27 12:07:37 · 1041 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:微积分
是描述函数某一点的变化率,借由微分可以得到特定点的斜率。在机器学习中,微分在求解的过程中占有举足轻重的地位,因。用以下微分的定理,就可以轻易解出上述范例的一阶导数,相。中占有举足轻重的地位,常用来计算各特征变量的梯度,进而。好,所以它是一个最小化的问题,所以,我们可以利用偏微分。积分则是微分的相反运算,与微分互为逆运算,微分用于斜率。或梯度的计算,积分则可以计算长度、面积、体积,也可以用。的功能,用以计算各特征变量的梯度,进而求得模型的权重。)限定范围的积分:先求积分,再将上、下限代入多项式,原创 2024-01-27 00:07:21 · 1028 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:神经网络原理
会想一窥究竟,了解背后运用的技术与原理,就会发现一堆数。局限,只有在假设成立的情况下,算法才是有效的,因此,如。果不了解算法中的各个假设,随意套用公式,就好像无视交通。四项学科相互为用,贯穿整个求解过程,因此,要通晓深度学。创新算法,都必须对其背后的数学和统计有一定基础的认识,很久的工程师而言,在上班之余,还要重修上述课程,相信大。晕脑涨,降低学习的效率,因此,笔者大胆建议,工程师将心。量个案的验证,虽然忽略了证明的做法,会让学习无法彻底地。其他行的倍数或多行的组合,包括各种四则运算,矩阵的列也。原创 2024-01-26 16:18:48 · 938 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:开发环境安装
开发环境,亦能使用云端环境,首先介绍本机安装的程序,建。式,另外,程序也可以单独执行,便于讲解,相关的用法可以。时,超时的话虚拟环境会被回收,所有程序、数据一律会被删。是目前机器学习主流的程序语言,可以直接在本机安装。端硬盘,选择使用完全不用转换,非常方便。)安装若有其他问题,可参考笔者的博客文章。)提醒各位读者,低端的显卡,若不能安装。)开通后,即可开始使用,可新增一个。注意:本教程所附的范例程序,一律为。独立显卡,若是较旧型的显卡,则。器学习的开发环境,这里介绍免费的。我们再来谈谈云端环境的开通,原创 2024-01-26 13:04:43 · 784 阅读 · 0 评论 -
深度学习从入门到精通+TensorFlow案例演示:AI学习和应用
每一阶段都在缩小范围,聚焦在特定的算法,机器学习是人工。智能的部分领域,而深度学习又属于机器学习的部分算法,如。机器学习的应用其实早已在不知不觉中融入我们的生活中了,影响预测目标的关键因素,有时候需要进行数据转换,以找到。的主要目的是确保测试数据不会参与训练,以维持其公正性,的发展划分为三个阶段,每一阶段的重点分别为人工智能、)新产生的数据可回馈入模型中,重新训练,自我学习,使。其间的差异在于,数据挖掘是着重挖掘数据的隐藏样态。量及统计图观察数据的分布,了解数据的特性、极端值。原创 2024-01-26 12:40:03 · 1094 阅读 · 0 评论 -
深度学习入门到精通+TensorFlow全程案例讲解:人工智能的三波浪潮
人工智能(Artificial Intelligence, AI)并不是最近几年才兴起的,目前已经是它第三波热潮了,前两波热潮都经历了十余年,就迈入了寒冬,这一波热潮至今已超过十年(2010至今),是否又将迈入寒冬呢?小,运算能力越来越强,对于边缘运算也有很大的帮助,如监。一解封,尤其是神经网络,现在已经可以建构上百层的模型,型,因此,模型设计就可以更复杂,算法逻辑也能够更完备。力,进行数据标注,确保数据的质量,使得训练出来的模型越。统,不过因不切实际,且需要使用大型且昂贵的计算机设备,原创 2024-01-25 22:02:34 · 837 阅读 · 0 评论