
深度学习
文章平均质量分 84
小样本/单分类等基础知识
wuxuand
这个作者很懒,什么都没留下…
展开
-
小样本学习综述2025
少样本类增量学习(FSCIL)是机器学习(ML)领域的一项独特挑战,它要求模型能够基于稀疏标注的训练样本持续学习新类别,同时避免遗忘先前学到的知识。尽管该领域近年来取得了一定进展,但仍处于积极探索阶段。本文旨在对FSCIL进行全面系统的梳理。原创 2025-03-27 21:30:48 · 1553 阅读 · 0 评论 -
小样本学习(概念区分)VS对比学习VS元学习的联系与区别
对小样本中的概念进行区分理解;如度量学习,元学习,对比学习等原创 2025-03-27 20:16:20 · 409 阅读 · 0 评论 -
3、孪生网络/连体网络(Siamese Network)
用Siamese Network (孪生网络) 解决Few-shot learning (小样本学习)。Siamese Network并不是Meta Learning最好的方法,但是通过学习Siamese Network,非常有助于理解其他Meta Learning算法。这里介绍了两种方法:Siamese Network (孪生网络)、Trplet Loss。原创 2025-03-25 23:40:50 · 315 阅读 · 0 评论 -
2小样本学习(Few-Shot)之相似度及小样本数据集
给六张卡片,逐一对比Query与每一个样本的相似度函数,选择相似度最高的样本。学习一个相似度函数similarity function:sim(x,x')两个样本越相近,相似度越高。原创 2025-03-25 23:11:40 · 775 阅读 · 0 评论 -
小样本学习(Few-Shot Learning)基本概念 VS 监督学习
使用传统训练集学习一个模型,模型训练好之后,给模型看新的图片做预测。测试样本图片属于已知类别,模型未见过的图片。原创 2025-03-25 21:42:18 · 456 阅读 · 0 评论