小样本学习综述2025

一、Few-Shot Class-Incremental Learning for Classification and Object Detection: A Survey

用于分类和目标检测的少样本类增量学习:综述
引用:
@ARTICLE{10840313,
  author={Zhang, Jinghua and Liu, Li and Silvén, Olli and Pietikäinen, Matti and Hu, Dewen},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={Few-Shot Class-Incremental Learning for Classification and Object Detection: A Survey}, 
  year={2025},
  volume={47},
  number={4},
  pages={2924-2945},
  keywords={Power capacitors;Surveys;Training;Systematics;Measurement;Object detection;Data privacy;Data models;Artificial neural networks;Overfitting;Incremental learning;continual learning;lifelong learning;class-incremental learning;catastrophic forgetting;few-shot learning;few-shot class-incremental learning;deep learning;image classification},
  doi={10.1109/TPAMI.2025.3529038}}

IEEE Transactions on Pattern Analysis and Machine Intelligence ( IF 20.8 )

 Pub Date : 2025-01-14 , DOI: 10.1109/tpami.2025.3529038

摘要:

少样本类增量学习(FSCIL)是机器学习(ML)领域的一项独特挑战,它要求模型能够基于**稀疏标注的训练样本**持续学习新类别,同时避免遗忘先前学到的知识。尽管该领域近年来取得了一定进展,但仍处于积极探索阶段。

本文旨在对FSCIL进行全面系统的梳理。通过深度剖析,我们重点探讨了以下维度:
1. 核心问题定义
2. 关键挑战分析:不可靠经验风险最小化与稳定性-可塑性困境
3. 通用解决方案框架
4. 相关研究脉络:增量学习(IL)与少样本学习(FSL)的关联性研究

研究同时涵盖了:
- 基准数据集与评估指标分析
- 少样本类增量分类(FSCIC)方法三大流派:
  ▶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值