如何处理 Flink Job BackPressure (反压)问题?

反压(BackPressure)机制被广泛应用到实时流处理系统中,流处理系统需要能优雅地处理反压问题。反压通常产生于这样的场景:短时间的负载高峰导致系统接收数据的速率远高于它处理数据的速率。许多日常问题都会导致反压,例如,垃圾回收停顿可能会导致流入的数据快速堆积,或遇到大促、秒杀活动导致流量陡增。反压如果不能得到正确的处理,可能会导致资源耗尽甚至系统崩溃。

反压机制就是指系统能够自己检测到被阻塞的 Operator,然后自适应地降低源头或上游数据的发送速率,从而维持整个系统的稳定。Flink 任务一般运行在多个节点上,将数据从上游算子发送到下游算子需要网络传输,若系统在反压时想要降低源头和上游数据的发送速率,那么肯定也需要网络传输。所以下面先来了解一下 Flink 的网络流控(Flink 对网络数据流量的控制)机制。

Flink 流处理为什么需要网络流控

下图是一个简单的 Flink 流任务执行图:任务首先从 Kafka 中读取数据、通过 map 算子对数据进行转换、keyBy 按照指定 key 对数据进行分区(key 相同的数据经过 keyBy 后分到同一个 subtask 实例中),keyBy 后对数据进行 map 转换,然后使用 Sink 将数据输出到外部存储。

简单的Flink流任务执行图

众所周知,在大数据处理中,无论是批处理还是流处理,单点处理的性能总是有限的,我们的单个 Job 一般会运行在多个节点上,通过多个节点共同配合来提升整个系统的处理性能。图中,任务被切分成 4 个可独立执行的 subtask 分别是 A0、A

评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符 “速评一下”
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付 99.00元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值