方面情感分析论文及代码

Aspect Sentiment Analysis Related Paper List and Code

方面情感分析论文

1. BERT

  • [AAAI 2021] Context-Guided BERT for Targeted Aspect-Based Sentiment Analysis [paper] [code]
  • [COLING 2020] Understanding Pre-trained BERT for Aspect-based Sentiment Analysis [paper] [code]
  • [EMNLP 2020] [model: SentiLARE] SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge [paper] [
### 查找与情感分析相关的学术论文下载及研究方法 #### 多模态情感分析的研究分类 多模态情感分析作为自然语言处理领域的一个重要分支,主要分为两种类型:叙述式多模态情感分析和交互式多模态情感分析[^1]。 #### 获取学术资源的方法 为了有效地获取情感分析方面的学术论文,可以采取多种策略。文献研究法是一种常用的方式,即根据特定的研究目标或主题,通过查阅现有文献来收集所需资料,进而全面而准确地理解所研究的问题[^3]。 利用现代信息技术手段也可以极大提高效率。例如,在教育行业中,尽管学术论文分散于多个平台使得信息搜集变得复杂,但借助Python编程中的网络爬虫技术能够实现自动化批量采集工作,帮助快速定位并下载相关文献,为后续深入探讨打下坚实基础[^4]。 #### 实施具体操作建议 当准备撰写关于情感分析方向的文章时,前期规划至关重要。这不仅涉及确立清晰的研究方向与期望达成的具体成果,还包括精心策划如何实施各项实验以验证假设、选用合适的数据集进行测试评估等内容;同时也要考虑后期数据分析处理流程的设计安排等问题[^2]。 ```python import requests from bs4 import BeautifulSoup def fetch_papers(url, keyword="情感分析"): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') papers = [] for link in soup.find_all('a'): title = link.string href = link.get('href') if keyword.lower() in str(title).lower(): papers.append((title.strip(), href)) return papers[:5] # Example usage (Note: This is a simplified example and may not work directly on actual websites due to anti-scraping measures.) papers_list = fetch_papers("http://example.com/academic-papers") for paper in papers_list: print(f"Title: {paper[0]}, URL: {paper[1]}") ``` 此段代码展示了如何使用`requests`库请求网页内容,并运用`BeautifulSoup`解析HTML文档结构,从中筛选含有指定关键词(如“情感分析”)的链接条目,最终返回前五个匹配项供进一步查看。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值