方面级情感分析论文泛08:Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence

提示1:原文链接
提示2:代码链接


前言

  本篇博客主要是对《Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence》进行了泛读,并对其进行了简单地记录,以帮助大家快速了解此篇论文的要点。

注:论文要点在2.3节辅助句子的构造方法。


一、论文信息

  • 论文名:《Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence》
  • 作者:Chi Sun, Luyao Huang, Xipeng Qiu.
  • 领域:ABSA
  • 关键词:BERT、Aspect-Based Sentiment Analysis、Constructing Auxiliary Sentence
  • 发表年份:2019
  • 会议/期刊名:NAACL

二、笔记要点

2.1 提出问题

  1、基于方面的情感分析(ABSA)旨在识别针对特定方面的细粒度意见极性,是情感分析(SA)的一项具有挑战性的子任务;
  2、直接使用预训练模型对ABSA任务效果不佳,我们认为这是由于对预训练的 BERT 模型使用不当造成的。

2.2 目前解决方法

早期:

  • 特征工程、神经网络(2014-2017)
  • (2018) 将有用的常识知识纳入深度神经网络,以进一步增强模型的结果;
  • 优化记忆网络

近年

  • ELMo、OpenAI GPT、BERT

2.3 本文方法和创新点

创新点:

  本文从方面构造了一个辅助句子,并将 ABSA 转换为句子对分类任务。(由于 BERT 的输入表示可以表示单个文本句子和一对文本句子,我们可以将 (T)ABSA 转换为句子对分类任务并微调预训练的 BERT)
构造方法:

  • Sentences for QA-M: 我们希望从目标方面对生成的句子是一个问题,格式需要相同。(For example,for the set of a target-aspect pair (LOCA TION1,safety), the sentence we generate is “what do you think of the safety of location - 1 ?”)
  • Sentences for NLI-M: 此时创建的句子不是标准句,而是一个简单的伪句,以(LOCATION1,safety)对为例:辅助句是:“location-1-safety”。
  • Sentences for QA-B: 对于 QA-B,我们添加标签信息并临时将 TABSA 转换为二元分类问题(标签 ∈ {yes, no})以获得概率分布。 此时,每个目标方面对将生成三个序列,例如“位置-1的方面安全的极性为正”、“位置-1的方面安全的极性为负”、“位置-1的方面安全的极性为无”。对于生成三个序列(正、负、无)的目标方面对,我们采用匹配分数最高的序列类别作为预测类别。
  • Sentences for NLI-B: NLI-B和QA-B的区别在于辅助句从疑问句变成了伪句。辅助句是:“位置-1-安全-积极”、“位置-1-安全-消极”和“位置-1-安全-无”。

2.4 模型结构

  对BERT模型进行微调

2.5 实验结果

数据集:

  • SentiHood
  • SemEval2014 Task 4
    SentiHood的一个例子

模型对比:

Exp-I: TABSA:
  LR、LSTM-Final、LSTM+TA+SA、SenticLSTM、Dmu-Entnet
Exp-II: ABSA:
  SemEval-2014任务4的基准是Pontiki等人(2014年)和TAE-LSTM(Wang等人,2016年)中表现最好的两个系统:XRCE、NRC-Canada

实验结果:

  • SentiHood上 TABSA 的表现结果
    Table 3
  • ABSA:Test set results for Semeval-2014 task 4 Sub-task 3:Aspect Category Detection

Table 4

  • ABSA:Test set accuracy (%) for Semeval-2014 task4 Subtask 4: Aspect Category Polarity
    Table 5

2.6 总结和思考

总结:

  构建了一个辅助句子,将 (T)ABSA 从单句分类任务转换为句子对分类任务,经过微调预训练模型取得了很好的效果;今后,将这种转换方法应用到其他任务。

思考:“为什么BERT-Pair的实验效果好很多?”
  一方面,我们将目标和方面信息转换为辅助句,相当于指数式地扩展语料库;另一方面,BERT 模型在处理句对分类任务方面具有优势。


总结

  以上就是本篇博客的全部内容了,希望对你有所帮助。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
Crossformer是一种利用交叉维度依赖性进行多元时间序列预测的Transformer模型。这个模型的动机是填补之前Transformer在处理多元时间序列时对不同变量之间关系刻画不足的问题。之前的Transformer更多地关注如何通过时间维度的注意力机制建立时序上的关系,而忽略了变量之间的关系。Crossformer通过引入时间维度和变量维度两个阶段的注意力机制来解决这个问题。特别是在变量维度上,Crossformer提出了一种高效的路由注意力机制。这篇论文填补了多元时间序列预测中变量关系建模的空白,并在ICLR2023中被提出。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *3* [【ICLR 2023】 CrossFormer增强多元时间序列建模能力](https://blog.csdn.net/qq_33431368/article/details/129483613)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [读论文《Crossformer:利用跨维度依赖进行多变量时间序列预测的Transform》](https://blog.csdn.net/vzvzvzv/article/details/131376526)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦想拯救世界_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值