Spark为何比MapReduce更快?Spark基于内存计算什么意思?

Spark在速度上优于MapReduce,原因包括:Spark任务以线程方式快速启动,多数操作在内存中完成减少磁盘I/O,shuffle阶段通过索引加速,并可缓存数据以避免重复加载。MapReduce则因进程启动慢,频繁数据落盘及排序,以及多个MapReduce作业间的磁盘依赖导致效率较低。Spark的内存计算特性在于任务间数据通信通过内存,而非硬盘,但shuffle阶段仍需硬盘参与。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 spark的task是线程,启动更快;mr的task是进程

2 spark的很多操作是在内存进行,只有shuffle操作才会把数据落盘;mr的很多操作,包括shuffle,都会把数据落盘

3 可忽略,mr的中间文件也有索引。 spark的shuffle阶段对中间结果文件建立有索引文件,读取更快;mr对中间文件没有建立索引文件;

4  spark的shuffle阶段启用bypass时不会对中间结果文件进行排序;mr的shuffle阶段包含3次排序;

5 spark可以对反复用到的数据进行缓存,避免多次加载花费时间;mr不能把多次用到的数据缓存起来

----------------------------

MapReduce慢的原因:

  • 多个MapReduce串联执行时,依赖于HDFS输出的中间结果
  • MapReduce在处理复杂的DAG(有向无环图)时会产生大量的数据序列化、数据copy和磁盘I/O开销    


Spark快的原因:

  • Spark基于内存,尽可能的减少了中间结果写入磁盘和不必要的sort、shuffle
  • Spark对于反复用到的数据进行了缓存
  • Spark对于DAG进
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二十六画生的博客

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值