TalkingGaussian: Structure-Persistent 3D Talking Head Synthesis via Gaussian Splatting 论文部署测试

Talking Gaussian

Ubuntu下CUDA11.3配置

参考

https://blog.csdn.net/weixin_71109434/article/details/130566689

sudo sh cuda_11.3.1_465.19.01_linux.run --override

安装GCC-9,G+±9

sudo apt install gcc-9 g++-9
sudo rm /usr/bin/gcc
sudo ln -s /usr/bin/gcc-9 /usr/bin/gcc

Installation

git clone git@github.com:Fictionarry/TalkingGaussian.git --recursive

conda env create --file environment.yml
conda activate talking_gaussian
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
pip install tensorflow-gpu==2.8.0

安装 tensorflow-gpu时,需要用下面的方式:

pip install tensorflow-gpu==2.8.0 -i https://mirrors.aliyun.com/pypi/simple/

Preparation

  • Prepare face-parsing model and the 3DMM model for head pose estimation.

    bash scripts/prepare.sh
    
  • Download 3DMM model from Basel Face Model 2009:

    # 1. copy 01_MorphableModel.mat to data_util/face_tracking/3DMM/
    # 2. run following
    cd data_utils/face_tracking
    python convert_BFM.py
    
  • Prepare the environment for EasyPortrait:

    # prepare mmcv
    conda activate talking_gaussian
    pip install -U openmim
    mim install mmcv-full==1.7.1
    
    # download model weight
    cd data_utils/easyportrait
    wget "https://n-ws-620xz-pd11.s3pd11.sbercloud.ru/b-ws-620xz-pd11-jux/easyportrait/experiments/models/fpn-fp-512.pth"
    

在Preparation这个步骤中,在下面的链接下载Basel Face Model 2009,而是在下文链接:
Download 3DMM model from Basel Face Model 2009:

https://huggingface.co/wsj1995/sadTalker/tree/main

Okay,到这里我的环境和数据准备完了,开始下一步操作。

Video Dataset

Here

Pre-processing Training Video

  • Run script to process the video.

    python data_utils/process.py data/<ID>/<ID>.mp4
    

开始执行视频处理, 又得下载文件,代码里面下载,又是卡死,只能手动下载了。

Downloading /home/ads/.tensorflow/models/deepspeech-0_1_0-b90017e8.pb.zip from https://github.com/osmr/deepspeech_features/releases/download/v0.0.1/deepspeech-0_1_0-b90017e8.pb.zip

下载完,要手动解压,放在/home/ads/.tensorflow/models/deepspeech-0_1_0-b90017e8.pb。

Downloading: "https://download.pytorch.org/models/resnet18-5c106cde.pth" to /home/ads/.cache/torch/hub/checkpoints/resnet18-5c106cde.pth
  • Obtain Action Units

    Run FeatureExtraction in OpenFace, rename and move the output CSV file to data/<ID>/au.csv.

  • Generate tooth masks

    export PYTHONPATH=./data_utils/easyportrait 
    python ./data_utils/easyportrait/create_teeth_mask.py ./data/<ID>
    

    https://jqjhya6sjf.feishu.cn/docx/Wb4odtbajovJJjxeKCjcOPemnJb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

且漫CN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值