机器学习
zt_xiaozhi
纵有疾风起,人生不言弃
展开
-
PCA and SVD
PCA(Principle Component Analysis ) 和 SVD(Singular Value Decomposition ) 线性代数分析和揭示矩阵特性的两个重要的方法。二者通过矩阵分解的方式得到不同的特征值或奇异值对应的特征向量。 本文以几何的视角入手看待两个方法。1. PCA(主成分分析).给定一个数据点集,PCA可以找出这组点集的一组正交基,可以完全表示这些点。在这组正交原创 2016-12-22 16:33:30 · 348 阅读 · 0 评论 -
机器学习概要
机器学习是什么机器学习是人工只能的一个分支。让你使用计算机设计一个系统使他 机器学习的分类监督学习(Unsuperwised)ContinousClustering &&Dimensionality Reduction o SVD o PCA o K-meansCategoriesAssociation Analysis o Apriori o FP-Growt原创 2017-01-24 23:38:04 · 451 阅读 · 0 评论