前缀和与差分技巧

今天来复习一下前缀和与差分。

数组区间和

前缀和任何一个高中生可能都会,但是我们不能想当然,任何一个技巧背后的发现过程的灵感不是那么显然的。
前缀和可以解决的问题是,以O(1)复杂度获得数组任意区间和。
对于每个数组元素,我们记录从开始到这个元素的和S[i]。这可以通过一遍遍历做到。
那么每个原始a[i] = s[i] -s[i-1]

输入一个长度为n的整数数列,接下来m个询问,每个询问一个区间 [l, r] 之间的区间和。
n, m 范围[1, 100000], 数列中元素的值 [-1000, 1000]

#include<iostream>
using namespace std;
const int N = 100000;
int s[N];
int main() {
    int n , m;
    scanf("%d%d", &n, &m);
    s[0] = 0;
    for (int i = 1; i <= n; i++) {
        scanf("%d", &s[i]);
        s[i] += s[i - 1];
    }
    int l, r; 
    while(m --) {
        scanf("%d%d", &l, &r);
        printf("%d\n", s[r] - s[l - 1]);
    }
    return 0;
}

子矩阵的和

将前缀和的思想推广到 二维仍然成立,具体可以自己画画图,这里不再赘述。

输入 n 行 m 列以及 q个询问。每个询问包含四个整数 x1 y1 x2 y2 标示矩阵的对角下标。
输出供q行,每行是 一个询问的结果。

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 1010;
int s[N][N];

int main() {
    int n, m, q; 
    scanf("%d%d%d", &n, &m, &q);
    for (int i = 1; i <= n ; i++) 
        for (int j = 1; j <= m; j++) { 
            int t;
            scanf("%d", &t);
            s[i][j] = s[i-1][j] + s[i][j - 1] - s[i - 1][j - 1] + t;
        }
    while (q--) {
        int x1,y1,x2,y2; scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
        if (x1 > x2) swap(x1, x2);
        if (y1 > y2) swap(y1, y2);
        int re = s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1];
        printf("%d\n", re);
    }
                
    return 0;
}


差分数组

场景是这样,对于任意一个整形数组,我们希望以 O(1) 的时间复杂度将一个区间[l, r] 的所有元素统一加 c。
差分实际是前缀和的逆向思考。我们假设当前的数组是某个差分数组的前缀和,那么当前数组在这个区间上增加一个c,等价于差分数组第l个元素加c,第 r+1个元素-c。
这样的差分数组是否一定存在呢,我们尝试构造。
a0 = s0, 那么有 a1 = s1 - s0 , a2 = s2 -s1, …
存在性得证。
其实可以写代码了,请看。

#include<iostream>
using namespace std;

const int N = 100010;
int b[N];

void insert(int l, int r, int c) {
    b[l] += c;
    b[r + 1] -= c;
}

int main() {
    int n, m;scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) {
        int val; scanf("%d", &val);
        insert(i, i, val);
    }
    while(m--) {
        int l, r, c; scanf("%d%d%d", &l, &r, &c);
        insert(l, r, c);
    }
    for (int i = 1; i <= n; i++) {
        b[i] += b[i - 1];
        printf("%d ", b[i]);
    }
    return 0;
}

差分矩阵

同样的,差分数组推广到二维仍然成立。

输入n行m列的矩阵,以及q次询问。
每个询问包含 x1,y1 x2 y2 c
输出更改后的矩阵。

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 1010;
int b[N][N];

void insert(int x1, int y1, int x2, int y2, int c) {
    if (x1 > x2) swap(x1, x2);
    if (y1 > y2) swap(y1, y2);
    b[x1][y1] += c;
    b[x2 + 1][y1] -= c;
    b[x1][y2 +1]  -= c;
    b[x2 + 1][y2 + 1] += c;
}


int main(){
    int n, m, q; scanf("%d%d%d", &n, &m, &q);
    for (int i = 1; i <= n; i++)
      for (int j = 1; j <= m; j++) {
          int val; scanf("%d", &val);
          insert(i, j, i, j, val);
      }
    while(q --) {
        int x1, y1, x2, y2 , c;
        scanf("%d%d%d%d%d", &x1, &y1, &x2, &y2, &c);
        insert(x1, y1, x2, y2, c);
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <=m; j++) {
            
            printf("%d ", b[i][j] = b[i-1][j] + b[i][j-1] - b[i-1][j-1] + b[i][j]);
        }
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值