今天来复习一下前缀和与差分。
数组区间和
前缀和任何一个高中生可能都会,但是我们不能想当然,任何一个技巧背后的发现过程的灵感不是那么显然的。
前缀和可以解决的问题是,以O(1)复杂度获得数组任意区间和。
对于每个数组元素,我们记录从开始到这个元素的和S[i]。这可以通过一遍遍历做到。
那么每个原始a[i] = s[i] -s[i-1]
输入一个长度为n的整数数列,接下来m个询问,每个询问一个区间 [l, r] 之间的区间和。
n, m 范围[1, 100000], 数列中元素的值 [-1000, 1000]
#include<iostream>
using namespace std;
const int N = 100000;
int s[N];
int main() {
int n , m;
scanf("%d%d", &n, &m);
s[0] = 0;
for (int i = 1; i <= n; i++) {
scanf("%d", &s[i]);
s[i] += s[i - 1];
}
int l, r;
while(m --) {
scanf("%d%d", &l, &r);
printf("%d\n", s[r] - s[l - 1]);
}
return 0;
}
子矩阵的和
将前缀和的思想推广到 二维仍然成立,具体可以自己画画图,这里不再赘述。
输入 n 行 m 列以及 q个询问。每个询问包含四个整数 x1 y1 x2 y2 标示矩阵的对角下标。
输出供q行,每行是 一个询问的结果。
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int s[N][N];
int main() {
int n, m, q;
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n ; i++)
for (int j = 1; j <= m; j++) {
int t;
scanf("%d", &t);
s[i][j] = s[i-1][j] + s[i][j - 1] - s[i - 1][j - 1] + t;
}
while (q--) {
int x1,y1,x2,y2; scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
if (x1 > x2) swap(x1, x2);
if (y1 > y2) swap(y1, y2);
int re = s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1];
printf("%d\n", re);
}
return 0;
}
差分数组
场景是这样,对于任意一个整形数组,我们希望以 O(1) 的时间复杂度将一个区间[l, r] 的所有元素统一加 c。
差分实际是前缀和的逆向思考。我们假设当前的数组是某个差分数组的前缀和,那么当前数组在这个区间上增加一个c,等价于差分数组第l个元素加c,第 r+1个元素-c。
这样的差分数组是否一定存在呢,我们尝试构造。
a0 = s0, 那么有 a1 = s1 - s0 , a2 = s2 -s1, …
存在性得证。
其实可以写代码了,请看。
#include<iostream>
using namespace std;
const int N = 100010;
int b[N];
void insert(int l, int r, int c) {
b[l] += c;
b[r + 1] -= c;
}
int main() {
int n, m;scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
int val; scanf("%d", &val);
insert(i, i, val);
}
while(m--) {
int l, r, c; scanf("%d%d%d", &l, &r, &c);
insert(l, r, c);
}
for (int i = 1; i <= n; i++) {
b[i] += b[i - 1];
printf("%d ", b[i]);
}
return 0;
}
差分矩阵
同样的,差分数组推广到二维仍然成立。
输入n行m列的矩阵,以及q次询问。
每个询问包含 x1,y1 x2 y2 c
输出更改后的矩阵。
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int b[N][N];
void insert(int x1, int y1, int x2, int y2, int c) {
if (x1 > x2) swap(x1, x2);
if (y1 > y2) swap(y1, y2);
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 +1] -= c;
b[x2 + 1][y2 + 1] += c;
}
int main(){
int n, m, q; scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
int val; scanf("%d", &val);
insert(i, j, i, j, val);
}
while(q --) {
int x1, y1, x2, y2 , c;
scanf("%d%d%d%d%d", &x1, &y1, &x2, &y2, &c);
insert(x1, y1, x2, y2, c);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <=m; j++) {
printf("%d ", b[i][j] = b[i-1][j] + b[i][j-1] - b[i-1][j-1] + b[i][j]);
}
printf("\n");
}
return 0;
}