- 博客(15)
- 资源 (2)
- 收藏
- 关注
原创 anaconda下配置openpose python API+caffe
如果你也像我一样没有服务器root权限,想在anaconda上跑openpose或caffe的话,希望你看到这篇文章,可以解决你的问题。首先先说下openpose下载源码https://github.com/CMU-Perceptual-Computing-Lab/openposeconda activate yourenvcd ./openposemkdir buildc...
2020-02-19 21:27:34 5951 5
转载 linux Boot目录满了之后的解决方法
转载地址:http://www.cnblogs.com/cjjjj/p/6835576.htmlLinux默认分区时,boot分区就200多M,按理说也不小,足够了(实际也就几十M),但是内核经常性的升级,而且自己又不自动卸载,于是该目录下旧的内核文件越积越多,最后就满了。解决方法:删除多余的内核文件步骤:(1)输入 uname -a 获取当前正在使用内
2017-08-31 20:44:00 4955
原创 每日论文 Learning from Simulated and Unsupervised Images through Adversarial Training
苹果首发用没有标签的真实人眼数据通过训练一个模拟器提炼网络(生成器)去提炼生成的人眼图片,增加生成人眼图片的真实性。用一个对抗损失和一个自正则化损失函数去优化训练过程。这个优化方程优化生成器R,同时增加了约束项,将提炼的人眼和生成的人眼就行L1范式最小化。这个优化方法优化辨别器,除了用生成的人眼数据使得值最小,还用到真实的人眼数据优化使得值最大。为了增加真实效果,还进行
2017-04-05 16:46:01 750
原创 每日论文 Deep Photo Style Transfer
这篇文章提出了一个图片真实化正则项,限制了图片的结构不变,只是局部附属颜色转变,避免了失真。该方法有选择性的艺术转化处理,该种方法是基于语义分割(DilatedNet)的方法,避免了图像内容不匹配的问题,更加提升了图片真实效果。
2017-04-05 15:29:15 1802
转载 相对熵(KL散度)
转载地址:http://blog.csdn.net/acdreamers/article/details/44657745今天开始来讲相对熵,我们知道信息熵反应了一个系统的有序化程度,一个系统越是有序,那么它的信息熵就越低,反之就越高。下面是熵的定义 如果一个随机变量的可能取值为,对应的概率为,则随机变量的熵定义为
2017-03-14 21:12:26 1174
转载 每日论文InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial
转载地址:http://hacker.duanshishi.com/?p=1766InfoGANInfoGAN是一种能够学习disentangled representation的GAN(https://arxiv.org/pdf/1606.03657v1.pdf),何为disentangled representation?比如人脸数据集中有各种不同的属性特点,如脸部表情、是否带
2017-03-13 16:09:19 2456
原创 每日论文Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
这篇文章用了深度残差网络同时用到GANs的概念构建的超分辨神经网络模型。主要贡献点:1.构建由MSE优化的16blocks残差网络(SRResNet)。2.SRGAN网络游GAN构建的网络。3.MOS测试在3个数据库上SRGAN都不错的效果。GAN的感知损失函数,除了GAN损失函数外还有基于内容的损失函数。内容的损失函数有两种,一种是MSE,还有一种是对VGG19的层卷积的结果求方
2017-03-10 16:15:54 1668
原创 每日论文image-to-Image Translation with Conditional Adversarial Networks
这篇文章设计一个有条件的GANs,文中的loss function 用了L1与ground truth距离而不是L2,减少了模糊。文中还用了skips,避免遇到网络结构上的瓶颈丢失了输入图像的重要信息。在判别器上,为了使得图像能高频化,文中将图片变成局部块,这样判别器只是惩罚局部的块,至于连接就用到了另一篇论文的思想,随机马尔代夫方法连接。为了更好优化网络,一步D,一步G,用最小SGD和Adam
2017-03-09 16:08:04 323
原创 每日论文Transient Attributes for High-Level Understanding and Editing of Outdoor Scenes
这篇文章可以将图像转化天气气候属性,比如一副图像的春天夏天或者雾天晴天干燥等。图像转化的非常自然。这篇文章主要创新点有:1.101个室外摄像头里面的捕捉的比较大变化的图片,并用众包标签了它。2.用训练回归器来识别属性。3.同时制作了用户界面可以改变想改变的属性。4,.可以对一个任意图像根据建立的图像数据库匹配进行自然转化。文中用学习认识属性的方法提出了三种:SVM,log,SVR,评估的方法用
2017-03-09 15:35:19 614
原创 每日论文Least Squares Generative Adversarial Networks
Least Squares Generative Adversarial Networks每天一篇论文,本人可能对论文的理解程度有限,欢迎评论批评指教。这篇文章说如果用sigmoid交叉熵的损失函数会将决策边侧认定为正确的假的样本地更新生成器的梯度消失,非常绕口,个人理解应该是损失函数不好,有些假的样本也会通过辨别器。因此这边文章改了损失函数,Least Squares Generat
2017-03-06 10:16:20 1407
原创 caffe 改动后的重新编译
caffe 改动后要重新编译,之前不知道,走了弯路。1.更新了内核代码后,要在caffe-master的文件路径里执行如下步骤:make cleanmake all -j8make test -j8make runtest 2.再重新编译python接口make pycaffe3.测试是否成功pythonimport caffe如果提示没有这个包
2016-11-24 10:08:32 8364 3
转载 BoxFilter包滤波器
原文转自:http://blog.csdn.net/lanbing510/article/details/28696833?ticket=ST-262302-2l7IJkVywJujmcfA2a3b-passport.csdn.net其主要功能是:在给定的滑动窗口大小下,对每个窗口内的像素值进行快速相加求和在模式识别领域,Haar特征是大家非常熟悉的一种图像特征了,
2016-03-21 16:43:19 302
转载 Retinex算法详解
申明,本文非笔者原创,原文转载自:http://blog.csdn.net/carson2005/article/details/9502053Retinex是一种常用的建立在科学实验和科学分析基础上的图像增强方法,它是Edwin.H.Land于1963年提出的。就跟Matlab是由Matrix和Laboratory合成的一样,Retinex也是由两个单词合成的一个词语,他们分别是re
2016-03-16 22:20:54 1122 1
转载 matlab conv2、filter2、imfilter的区别
申明,本文非笔者原创,原文转载自:http://www.ilovematlab.cn/thread-293710-1-1.html-------------------------------------conv2函数----------------------------------------1、用法C=conv2(A,B,shape);
2016-03-16 22:19:04 296
原创 双边滤波器的原理
在看一篇论文时候用到了双边滤波,在网上搜了搜,看到几篇解释,再根据我的理解,简短写下来,好日后翻看能记起来这些基础的知识点:通过高斯分布的曲线可以发现,离目标像素越近的点对最终结果的贡献越大,反之则越小。与高斯滤波的差别是,除了附近的像素值影响,还有相似像素值的影响,Bilateral就是在Gaussian blur中加入了另外的一个权重分部来解决空间域和值域的相似。滤波器:
2016-01-20 17:20:17 544
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人