每日论文Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

SRGAN超分辨模型
本文介绍了一种结合深度残差网络与GANs概念的超分辨率增强模型SRGAN。该模型包含两个关键组件:一是通过MSE优化的16层残差网络SRResNet;二是利用GANs原理构建的SRGAN网络。实验表明,在多个数据库上,SRGAN在主观视觉效果方面表现优秀。

这篇文章用了深度残差网络同时用到GANs的概念构建的超分辨神经网络模型。主要贡献点:

1.构建由MSE优化的16blocks残差网络(SRResNet)。

2.SRGAN网络游GAN构建的网络。

3.MOS测试在3个数据库上SRGAN都不错的效果。

GAN的感知损失函数,除了GAN损失函数外还有基于内容的损失函数。内容的损失函数有两种,一种是MSE,还有一种是对VGG19的层卷积的结果求方差的损失函数。

网络结构如下图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值