这篇文章用了深度残差网络同时用到GANs的概念构建的超分辨神经网络模型。主要贡献点:
1.构建由MSE优化的16blocks残差网络(SRResNet)。
2.SRGAN网络游GAN构建的网络。
3.MOS测试在3个数据库上SRGAN都不错的效果。
GAN的感知损失函数,除了GAN损失函数外还有基于内容的损失函数。内容的损失函数有两种,一种是MSE,还有一种是对VGG19的层卷积的结果求方差的损失函数。
网络结构如下图:
SRGAN超分辨模型
本文介绍了一种结合深度残差网络与GANs概念的超分辨率增强模型SRGAN。该模型包含两个关键组件:一是通过MSE优化的16层残差网络SRResNet;二是利用GANs原理构建的SRGAN网络。实验表明,在多个数据库上,SRGAN在主观视觉效果方面表现优秀。
这篇文章用了深度残差网络同时用到GANs的概念构建的超分辨神经网络模型。主要贡献点:
1.构建由MSE优化的16blocks残差网络(SRResNet)。
2.SRGAN网络游GAN构建的网络。
3.MOS测试在3个数据库上SRGAN都不错的效果。
GAN的感知损失函数,除了GAN损失函数外还有基于内容的损失函数。内容的损失函数有两种,一种是MSE,还有一种是对VGG19的层卷积的结果求方差的损失函数。
网络结构如下图:
302
3376
1804
1573
3164
338
811
2985
1万+
492
1221

被折叠的 条评论
为什么被折叠?