YARN任务提交流程

Yarn是随着hadoop发展而催生的新框架,全称是Yet Another Resource Negotiator,可以翻译为“另一个资源管理器”。yarn取代了以前hadoop中jobtracker(后面简写JT)的角色,因为以前JT的 任务过重,负责任务的调度、跟踪、失败重启等过程,而且只能运行mapreduce作业,不支持其他编程模式,这也限制了JT使用范围,而yarn应运而 生,解决了这两个问题。

1. Yarn(或称MRv2)

Yarn把jobtracker的任务分解开来,分为:

ResourceManager(简写RM)负责管理分配全局资源
ApplicationMaster(简写AM),AM与每个具体任务对应,负责管理任务的整个生命周期内的所有事宜

除了上面两个以外,tasktracker被NodeManager(简写NM)替代,RM与NM构成了集群的计算平台。这种设计允许NM上长期运 行一些辅助服务,这些辅助服务一般都是应用相关的,通过配置项指定,在NM启动时加载。例如在yarn上运行mapreduce程序时,shuffle就 是一个由NM加载起来的辅助服务。需要注意的是,在hadoop 0.23之前的版本,shuffle是tasktracker的一部分。

与每个应用相关的AM是一个框架类库,它与RM沟通协商如何分配资源,与NM协同执行并且监测应用的执行情况。在yarn的设计 中,mapreduce只是一种编程模式,yarn还允许像MPI(message passing interface),Spark等应用构架部署在yarn上运行。

2. Yarn设计

这里写图片描述

上图是一个典型的YARN集群。可以看到RM有两个主要服务:

可插拔的Scheduler,只负责用户提交任务的调度
Applications Manager的(简写AsM)负责管理集群中每个任务的ApplicationMaster(简写AM),负责任务的监控、失败重起等

在hadoop1.0时,资源分配的单位是slot,再具体分为map的slot与reduce的slot,而且这些slot的个数是在任务运行前 事先定义的,在任务运行过程中不能改变,很明显,这会造成资源的分配不均问题。在haodop2.0中,yarn采用了container的概念来分配资 源。每个container由一些可以动态改变的属性组成,到现在为止,仅支持内存、cpu两种。但是yarn的这种资源管理方式是通用的,社区以后会加 入更多的属性,比如网络带宽,本地硬盘大小等等。

3.Client向RM提交任务流程

Client向RM提交任务的过程大致分为七步,先略微讲解再详解:

这里写图片描述

  1. Client向RM发出请求
  2. RM返回一个ApplicationID作为回应
  3. Client向RM回应Application Submission Context(ASC)。ASC包括ApplicationID、user、queue,以及其他一些启动AM相关的信息,除此之外,还有一个Container Launch Context(CLC),CLC包含了资源请求数(内存与CPU),job files,安全token,以及其他一些用以在一个node上启动AM的信息。任务一旦提交以后,client可以请求RM去杀死应用或查询应用的运行状态
  4. 当RM接受到ASC后,它会调度一个合适的container来启动AM,这个container经常被称作为container 0。AM需要请求其他的container来运行任务,如果没有合适的container,AM就不能启动。当有合适的container时,RM发请求到合适的NM上,来启动AM。这时候,AM的PRC与监控的URL就已经建立了。
  5. 当AM启动起来后,RM回应给AM集群的最小与最大资源等信息。这时AM必须决定如何使用那么当前可用的资源。YARN不像那些请求固定资源的scheduler,它能够根据集群的当前状态动态调整。
  6. AM根据从RM那里得知的可使用的资源,它会请求一些一定数目的container。This request can be very specific,including containers with multiples of the resource minimum values (e.g., extra memory)。
  7. RM将会根据调度策略,尽可能的满足AM申请的container。

在一个job运行时,AM会向RM汇报心跳与进度信息,在这些心跳过程中,AM可能去申请或释放container。会当任务完成时,AM向RM发送一条任务结束信息然后退出。如下图所示:

这里写图片描述

4. Yarn组件间通信

4.1 Client与RM

这里写图片描述

上面这个图是Client向RM提交任务时第一次请求的流程图:
(1) Client通过New Application Request来通知RM中的AsM组件需要提交任务;
(2) AsM一般会返回一个新生成的全局唯一ID,除此之外,传递的信息还有集群的资源状况,这样Client就可 以在需要时请求资源来运行任务的第一个container即AM。
(3) 之后,Client就可以构造并发送ASC了。ASC中包括了调度队列,优先级,用户认证信息,除了这些基本的信息之外,还包括用来启动AM的CLC信息,一个CLC中包括jar包、任务文件、安全token、资源请求以及运行任务过程中需要的其他文件。

经过上面这三步,一个Client就完成了一次任务的请求。之后,Client可以直接通过RM查询任务的状态,在必要时,可以要求RM杀死这个应用。如下图:

这里写图片描述

4.2 RM与AM

RM在收到Client端发送的ASC后,它会查询是否有满足其资源要求的container来运行AM,找到后,RM会与那个container所在机器上的NM通信,来启动AM。下面这个图描述了这其中的细节:

这里写图片描述

(1) AM向RM注册,这个过程包括handshaking过程,并且传递一些信息,包括AM监听的RPC端口、用于监测任务运行状态的URL等。
(2) RM中的Scheduler部件做回应。这个过程会传递AM所需的信息,比如这个集群的最大与最小资源使用情况等。AM利用这些信息来计算并请求任务所需的资源。
(3) 这个过程是AM向RM请求资源。传递的信息主要包含请求container的列表,还有可能包含这个AM已经释放的container的列表。
(4) 在AM经过(3)请求资源之后,在稍微晚些时候,会把心跳包与任务进度信息发送给RM
(5) Scheduler在收到AM的资源请求后,会根据调度策略,来分配container以满足AM的请求。
(6) 在任务完成后,AM会给RM发送一个结束消息,然后退出。

在上面(5)与(6)之间,AM在收到RM返回的container列表后,会与每个container所在机器的NM通信,来启动这个container,下面就说说这个过程。

4.3 AM与NM

这里写图片描述

(1) AM向container所在机器的NM发送CLC来启动container
(2)(3) 在container运行过程中,AM可以查询它的运行状态

通过上面的描述,开发者在开发YARN上的应用时主要需要关注以下接口:

ApplicationClientProtocol

   Client使用这个协议来与RM通信,来启动一个新应用,检查任务的运行状态或杀死任务

ApplicationMasterProtocol

    AM使用这个协议来向RM注册/撤销,请求资源来运行任务。

ContainerManagementProtocol

    AM使用这个协议来与NM通信,来启动/停止container,查询container的状态。

ResourceManager 的服务

展开阅读全文
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值