Eratosthenes筛法名字虽然高贵冷艳,但是并不难理解,原理就不多说了,但是它做了许多无用功,一个数会被筛到好几次,最后的时间复杂度是O(nloglogn),不要以为这个复杂度已经很好了,因为有直接O(n)的欧拉筛法存在,下面简单叙述一下其原理,最后由程序的运行结果来说明两者的差距。
欧拉筛法的思想就是不做无用功,原本Eratosthenes筛法的第一重循环是用来找素数,然后把素数的倍数标记,而欧拉筛法换了一个角度,第一位是找素数没有问题,但是标记的时候用的是所有数(合数素数都能用来做标记)来标记,并加上了一句特判来跳出循环,什么意思呢?对于当前的一个数i,欧拉筛法把从2, 3, 5....到小于 i 的最大素数分别和 i 相乘得到的数标记成合数。并且过程中一旦发现 i % (p[j]) == 0,则跳出循环,有什么用呢?这样做保证了每个合数只被他的最小素因子筛到一次,为什么?这么想,我们每次想要标记的数是 i * p[j], 有因子p[j], 如果 i 没有因子 p[j] 则标记(这是第一次用p[j]标记的时候干的事),易于发现当 i 中 p[j] 的指数为x时,i 是被 (i / p[j]) 这个数 * p[j] 时标记的,只标记了一次。
下面是两者对比的代码,网上看到说由于欧拉筛法的特判有取模运算,所以在数据小的时候不如Eratosthenes筛法快,亲测了一下,根本感觉不到差距,反而是数据变大以后,两者差距变得越来越明显,从消耗的时间上可以看出。(当然我