机器学习基础知识、业务架构;
算法代替人类思考,实现生产力飞跃,;
大部分开源工具封装了算法;无需算法开发以及算法的公式推导;如何使用算法解决自身的应用场景;业务和算法使用相结合;
算法开发者:开发一套算法并将算法应用到业务领域;
用机器学习解决业务问题;

大量的历史数据,统计学算法,
数据+算法(根据数据类型选择)=模型(业务解决方案);
机器学习业务结构体系;
基础设施–计算架构–模型与算法–业务应用层;使得生成的模型和业务相结合;
离线训练
在线预测:广告投放业务;
预测和评估:
社区服务:


本文探讨了机器学习在业务场景中的应用方法,介绍了如何利用现有算法解决实际问题,并讨论了从数据到模型再到业务解决方案的过程。文章还概述了机器学习业务结构体系,包括基础设施、计算架构、模型与算法以及业务应用层。
666

被折叠的 条评论
为什么被折叠?



