批判性思维

批判性思维:用怀疑的态度推敲所有的可能性,以自己的方式作排除,留下最有用的信息; 1,准确地表述你的问题; 2.收集信息; 3.应用信息; 4.考虑潜在影响; 5.探究其他观点,了解全方位地观点; ...

2018-09-30 14:11:05

阅读数 45

评论数 0

吴恩达序列模型

1.seq2seq模型:机器翻译、语音识别; 基本模型

2018-09-27 17:17:41

阅读数 60

评论数 0

求解开普勒方程

一般天体遵循椭圆轨道, 如图椭圆是实际运行的轨道, 与椭圆相切的是一个以半长轴为半径的辅助圆. 在一定的时间t内, 椭圆轨道上的质点运行到了p点, 而辅助圆上的假想质点运行到了y点. 椭圆轨道上所转过的角度\angle T被称为真近点角(True Anomaly) 辅助圆轨道上假想质点所转过的角...

2018-09-27 15:58:40

阅读数 121

评论数 0

陈果

循序渐进才能赢得时间,细水长流才能直达永恒; 浪费自己的时间是最不智慧的行为,不管何种理由加以解释; 自我牺牲后面有回报需求; 自己的生活达到一种快乐圆满的状态,天助自助者; 什么对自己是好的;与生命的和解而不是对抗; 社交是廉价的;有多少时间是自己的呢?适当的距离使得每一个人成为适当而独特的风景...

2018-09-27 13:50:15

阅读数 551

评论数 0

思维力

思维力的三大问题: 1.分析时:想不明白; 2.表达时,说不清楚; 3.学习时,学不快速; 知识淘汰和更新的速度进一步加快,靠吃知识和经验的老本不能立足于职场; 系统思维:用框架来系统思考与表达的思维方式; AwNzA1ODc=/font/5a6L5L2T/fontsize/400/fill/...

2018-09-26 15:56:52

阅读数 39

评论数 0

python 深度学习 keras之父

想要控制一件事物,首先需要能够观察它。 机器学习发展历程: 概率建模:logistic回归、朴素贝叶斯; 早期神经网络:梯度下降; 核方法: SVM; 随机森林、决策树和梯度提升机; 神经网络; Kaggle 上主要有两大方法:梯度提升机和深度学习。梯度提升机主要使用XGBoost,深度学习主...

2018-09-26 13:46:13

阅读数 379

评论数 0

NLP自然语言理解-中科院(宗成庆) P1~P4

自然语言:人类语言,人类历史发展过程中所产生的; 机器翻译、网络安全文本挖掘; 侠义:自然语言到机器内部的一种映射; 被动统计语言存在的规律,主动让计算机完成某样功能,为人类提供服务。机器翻译、信息检索、自动形成Summary; 应用:机器翻译、信息检索、自动文摘、问答系统、信息过滤、信息抽取...

2018-09-22 15:16:04

阅读数 259

评论数 0

P2 邹博机器学习logistic回归

ML/DL (1)数据->模型(,建模,what); (2)模型->参数(How,SGD、BGD及其变种+动量、方向、Newton、BFGS、L-BFGS),可用包实现,优化成为瓶颈; 重点:给定数据,求模型; ResNet:残差,梯度可...

2018-09-21 17:54:09

阅读数 118

评论数 0

序列模型第一周编程练习

11

2018-09-21 13:37:38

阅读数 56

评论数 0

邹博P10 决策数和随机森林

分类器:决策数和随机森林

2018-09-19 18:01:55

阅读数 122

评论数 0

阿里云 李博

机器学习基础知识、业务架构; 算法代替人类思考,实现生产力飞跃,; 大部分开源工具封装了算法;无需算法开发以及算法的公式推导;如何使用算法解决自身的应用场景;业务和算法使用相结合; 算法开发者:开发一套算法并将算法应用到业务领域; 用机器学习解决业务问题; 大量的历史数据,统计学算法, 数据+算...

2018-09-19 16:04:18

阅读数 36

评论数 0

吴恩达序列模型第一周循环序列模型

1.序列模型实例 语音识别:输入语音,输出文本; 音乐生成:输入:空集或单一整数,输出:序列; 情感分类:输入:序列,输出:数字; DNA序列分析:输入:序列;输出:序列; 机器翻译:输入:序列;输出:序列; 视频活动识别:输入:视频帧;输出:动作; 命名实体识别:输入:句子,输出:人名;搜索,查...

2018-09-19 15:35:15

阅读数 30

评论数 0

斯坦福吴恩达CS229机器学习 P4牛顿方法

逻辑回归(牛顿法) 指数分不族 广义线性模型;将逻辑回归和最小二乘模型联系在一起。 极大似然估计模型 (1)初始化thta,参数可初始化为0; (2) delta=f(thta0)/f’(thta0) thta1=thta0-delta=thta0-f(thta0)/f’(thta0); 牛顿方法...

2018-09-18 20:44:36

阅读数 32

评论数 0

斯坦福深度学习和自然语言处理CS224N P2 词向量表示word2vec

斯坦福深度学习和自然语言处理CS224N P2 词向量表示word2vec 1.基于最简单的结构构建神经网络 用神经网络完成学习词语表征的简单任务 (1)word meaning(15min) (2)word2vec introduction(2013,词汇表征)(15min) (3)resear...

2018-09-18 20:17:12

阅读数 53

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭