链接:http://acm.hdu.edu.cn/showproblem.php?pid=1233
题目:
还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 23046 Accepted Submission(s): 10254
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
Sample Output
3 5
解题思路:
最小生成树的最基本的题目。对于此类问题,我们可以有两种做法,一种是Prim算法(点的贪心),一种是Kruskal算法(边的贪心)。
解法1代码:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define INF 0x7fffffff
const int MAXN = 110;
int n, map[MAXN][MAXN], lowcost[MAXN];
int Prim(int v)
{
int ans = 0;
for(int i = 1; i <= n; i++)
{
lowcost[i] = map[v][i];
}
lowcost[v] = 0;
for(int i = 1; i < n; i++)
{
int min = INF, minpos = 0;
for(int j = 1; j <= n; j++)
{
if(lowcost[j] && lowcost[j] < min)
{
min = lowcost[j];
minpos = j;
}
}
ans += min;
lowcost[minpos] = 0;
for(int j = 1; j <= n; j++)
{
if(lowcost[j] && map[minpos][j] < lowcost[j])
{
lowcost[j] = map[minpos][j];
}
}
}
return ans;
}
int main()
{
while(~scanf("%d", &n) && n)
{
memset(map, 0, sizeof(map));
memset(lowcost, 0, sizeof(lowcost));
int m = n * (n - 1) / 2;
while(m--)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
map[a][b] = map[b][a] = c;
}
printf("%d\n", Prim(1));
}
return 0;
}
解法2代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 100;
struct Eage
{
int start, end, length;
};
Eage eage[MAXN*MAXN/2];
int n, m, set[MAXN];
bool cmp(const Eage &a, const Eage &b)
{
return a.length < b.length;
}
int set_find(int p)
{
if(set[p] < 0) return p;
return set[p] = set_find(set[p]);
}
void join(int p, int q)
{
p = set_find(p);
q = set_find(q);
if(p != q) set[p] = q;
}
int Kruskal()
{
int ans = 0;
for(int i = 0; i < m; i++)
{
if(set_find(eage[i].start) != set_find(eage[i].end))
{
join(eage[i].start, eage[i].end);
ans += eage[i].length;
}
}
return ans;
}
int main()
{
while(~scanf("%d", &n) && n)
{
memset(set, -1, sizeof(set));
memset(eage, 0, sizeof(eage));
m = n * (n - 1) / 2;
for(int i = 0; i < m; i++)
{
scanf("%d%d%d", &eage[i].start, &eage[i].end, &eage[i].length);
}
sort(eage, eage + m, cmp);
printf("%d\n", Kruskal());
}
return 0;
}