- 博客(61)
- 资源 (1)
- 问答 (5)
- 收藏
- 关注
原创 MVMoE: Multi-Task Vehicle Routing Solver with Mixture-of-Experts
学习解决车辆路径问题(VRPs)已经引起了广泛的关注。然而,大多数神经求解器只是在特定问题上进行结构和训练,这使得它们不那么通用和实用。在本文中,我们的目标是开发一个统一的神经求解器,可以同时处理一系列的VRP变体。具体地说,我们提出了一种具有专家混合功能的多任务车辆路由求解器(MVMoE),它在不按比例提高计算量的情况下,大大提高了模型的容量。我们进一步为MVMoE开发了一种分层门控机制,在经验性能和计算复杂性之间提供了良好的权衡。
2025-02-25 14:17:18
921
原创 Multi-Task Learning for Routing Problem with Cross-Problem Zero-Shot Generalization 学习笔记
车辆路径问题由于具有重要的实际意义而受到广泛的研究。在过去的十年中,利用神经网络以端到端方式解决VRP已经获得了大量的研究关注。然而,目前的工作需要为每个路由问题建立单独的神经模型,这使得解决不同的问题变得不切实际。我们将VRP视为一组共享底层属性的不同组合,并提出将其作为多任务学习同时解决。我们在多个具有不同属性的VRP上训练一个统一的模型,并使用它以zero-shot的方式解决其他未见过的问题。实验表明,我们的模型与单任务方法相当,单任务方法为每个问题训练一个模型。
2025-02-24 14:14:31
675
1
原创 操作系统学习笔记
程序是由若⼲个逻辑分段组成的,如可由代码分段、数据分段、栈段、堆段组成。不同的段是有不同的属性的,所以就⽤分段(Segmentation)的形式把这些段分离出来。
2025-02-21 00:56:13
1018
原创 MySQL八股学习笔记
在插入数据的时候,会为被 AUTO_INCREMENT 修饰的字段加上轻量级锁,然后给该字段赋值一个自增的值,就把这个轻量级锁释放了,而不需要等待整个插入语句执行完后才释放锁。既在宕机前,其中一个刷入磁盘,另一个没有来得及写。如果某个查询语句使用了二级索引,但是查询的数据不是主键值,这时在二级索引找到主键值后,需要去聚簇 索引中获得数据行,这个过程就叫作「回表」。会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;
2025-02-21 00:55:22
790
原创 Docker学习笔记
实现类似ip→域名的功能,让容器之间可以互相访问。docker0默认不支持主机域名。创建自定义网络,容器名就是稳定的域名。create创建inspect检查细节ls列表rm移除docker run -d -p 88 :80 --name app1 --network mynet nginx #将创建的容器加入到mynet网络,形成域名http://app1:80curl http://app1:80 #获取网页内容:域名访问,也可以使用ip地址。
2024-10-23 15:39:52
777
原创 MySQL 自学笔记(入门基础篇,含示例)
若employee表格中小绿的数据被删除,works_with表格中对应数据同步删除。若employee表格中小绿的数据被删除,branch表格中对应数据置为。2.取得所有出生于:1978-01-01之后的女性员工人数。2.找出对单一客户销售金额超出50000的员工的名字。6.取得所有员工的性别(不重复)2.员工id + 员工名子。3.取得所有员工的平均薪水。4.取得所有员工薪水的总和。3.取得生日在12月的员工。4.取得薪水前3高的员工。5.取得所有员工的名字。5.取得薪水最高的员工。
2024-09-04 20:13:13
1049
翻译 Learning to Search Feasible and Infeasible Regions of Routing Problems with Flexible Neural k-Opt
文章目录摘要一、介绍二、相文献回顾(1)L2C求解器(2)L2S求解器(3)L2P求解器(4)可行性满意度三、初步准备和符号(1)VRP符号(2)传统k-opt启发式算法四、神经k-opt (NeuOpt)1.公式(1)S-move(2)Definition 1 (Node rank w.r.t. anchor node)(3)I-move(4)E-move(5)MDP公式2.循环双流(RDS)解码器(1)用于动作分解的GRUs(2)双流语境模型3.Inference with the dynamic da
2024-05-12 20:48:07
249
翻译 Automatic Planning of Multiple Itineraries: A Niching Genetic Evolution Approach
自动行程规划是旅游业中一个重要而具有挑战性的问题。本文提出了一种新的自动规划方法来提出满足游客特定需求的多行程建议。首先,开发了一个多行程规划模型,为游客提供了三个定制的选择目标,并支持生成多次DDD-日旅行。该模型比文献作品所做的假设更少,但它为游客提供了更多的灵活性。然后,基于多行程规划模型,设计了一种小生境遗传进化方法来完成自动行程规划任务。遗传进化方法保证了较高的搜索效率,而生态位策略有助于保持种群多样性。因此,所得到的算法最终可以提供许多不同的和优越的解决方案。
2024-05-12 20:46:22
203
翻译 Primer: Searching for Efficient Transformers for Language Modeling 学习笔记
大型Transformer模型最近已经成为自然语言处理最新进展的核心。然而,这些模型的训练和推理成本已经迅速增长,并变得非常昂贵。在这里,我们的目标是通过寻找一种更有效的变体来降低Transformer的成本。与以前的方法相比,我们的搜索是在一个较低的级别上执行的,在定义Transformer TensorFlow程序的原语上。我们确定了一个名为Primer的架构,它比原始的Transformer和其他自回归语言建模的变量具有更小的训练成本。
2023-04-18 20:07:06
694
1
翻译 Sym-NCO: Leveraging Symmetricity for Neural Combinatorial Optimization 学习笔记
基于深度强化学习(DRL)的组合优化(CO)方法(如DRL-NCO)已经展现了超过传统CO解决器的显著优点,因为DRL-NCO能够在没有验证求解器得到监督的情况下学习CO求解器标签。本文展示了一个新的训练方案,Sym-NCO,与现有DRL-NCO方法的性能显著提高。Sym-NCO是一种基于正则化器的训练方案,它在各种CO问题和解决方案中利用了通用的对称性。施加旋转不变性和反射不变性等对称性可以大大提高DRL-NCO的泛化能力,因为对称性是某些CO任务所共享的不变性特征。
2023-03-10 14:33:01
929
4
翻译 Learning Collaborative Policies to Solve NP-hard Routing Problems 学习笔记
最近,深度强化学习(DRL)框架显示出了解决NP-hard路由问题的潜力,如没有特定问题的专家知识的旅行商问题(TSP)。尽管DRL可以用于解决复杂的问题,但DRL框架仍然难以与展示出巨大性能优势的最先进的启发式方法竞争。本文提出了一种新的层次问题解决策略,即学习协作策略(LCP),该策略可以利用播种器(seeder)和修正器(reviser)两种迭代DRL策略有效地找到接近最优的解。
2023-02-26 14:17:33
1214
3
翻译 Multi-Decoder Attention Model with Embedding Glimpse for Solving Vehicle Routing Problems 学习笔记
本文提出了一个新颖的深度强化学习方法,来构建车辆路由问题(vehicle routing problems)的启发式算法。具体来说,本文提出了一个多译码器注意力模型(Multi-Decoder Attention Model,MDAM)来训练多种不同的策略,相比只训练一个策略的现有方法,这大幅度增加了找到好的解决方案的机会。一个自定义的b波束搜索策略被设计,以此来充分利用MDAM的多样性。另外,本文基于结构的递归性质,在MDAM提出了一个嵌入Glimpse层,这通过提供更多有信息的嵌入,可以改善每个策略。
2023-02-23 16:53:02
706
翻译 POPULATION-BASED REINFORCEMENT LEARNING FOR COMBINATORIAL OPTIMIZATION PROBLEMS 学习笔记
使用强化学习来解决组合优化问题很具有吸引力,因为它去除了专家知识或预解决实例的需求。然而,期待一个智能体(agent)在一次推断中来解决这些困难问题(常常为NP-hard)是不现实的,因为问题内在的复杂性。因此,领先方法通常实现额外的搜索策略,从随机抽样和波束搜索到显式微调。本文中,我们主张学习大量补充政策的好处,它可以在推理时同时推演(rollout)。为此,我们介绍Poppy,一个简单的有理论基础的群(population)训练程序。
2023-01-28 16:48:20
355
翻译 Seeking Multiple Solutions of Combinatorial optimization Problems: A Proof of Principle Study 学习笔记
Seeking Multiple Solutions of Combinatorial optimization Problems: A Proof of Principle Study 学习笔记,翻译
2022-12-29 14:29:33
385
原创 POMO: Policy Optimization with Multiple Optima for Reinforcement Learning学习笔记
POMO算法的学习笔记,包含基础知识铺垫、原文总结翻译、相关领域补充。POMO是一种基于深度强化学习的纯数据驱动的组合优化方法,它避免了由领域专家手工构建的启发式方法。在训练和推理阶段,POMO利用CO问题的多个最优解的存在,有效地引导自己达到最优。与其他结构的深度RL方法相比,POMO在缩小最优性差距和减少推理时间方面达到了最先进的性能。
2022-12-24 00:04:09
4193
5
原创 深度强化学习的组合优化[1] 综述阅读笔记
此文为文献阅读笔记。[1]李凯文, 张涛, 王锐, 覃伟健, 贺惠晖, & 黄鸿. (2021). 基于深度强化学习的组合优化研究进展. 自动化学报, 47(11),
2022-12-03 18:45:57
2069
翻译 Heterogeneous Attentions for Solving Pickup and Delivery Problem via Deep Reinforcement Learning
论文阅读笔记:Heterogeneous Attentions for Solving Pickup and Delivery Problem via Deep Reinforcement Learning
2022-11-25 16:08:23
377
原创 异构图注意力网络Heterogeneous Graph Attention Network ( HAN )
异构图注意力网络Heterogeneous Graph Attention Network ( HAN )学习笔记。
2022-11-24 16:23:51
3955
2
原创 强化学习 补充笔记(TD算法、Q学习算法、SARSA算法、多步TD目标、经验回放、高估问题、对决网络、噪声网络)
深入了解马尔科夫决策过程(MDP),包含TD算法、Q学习算法、SARSA算法、多步TD目标、经验回放、高估问题、对决网络、噪声网络。基础部分见:强化学习 马尔科夫决策过程(价值迭代、策略迭代、雅克比迭代、蒙特卡洛)
2022-11-23 23:41:06
825
原创 强化学习 马尔科夫决策过程(价值迭代、策略迭代、雅克比迭代、蒙特卡洛)
本文讲解了Markov过程、奖励过程、决策过程三个方面。包含价值迭代、策略迭代、雅克比迭代(解决自举问题)、蒙特卡洛(无模型)方式。
2022-11-22 23:48:19
2480
原创 Kalman filtering卡尔曼滤波和Particle Filter粒子滤波及其MATLAB实现
通过寻找一组在状态空间中传播的随机样本来近似的表示概率密度函数,用样本均值代替积分运算,进而获得系统状态的最小方差估计的过程,这些样本被形象的称为“粒子”,故而叫粒子滤波Particle Filter。在经济学领域,粒子滤波被应用在经济数据预测;在军事领域已经被应用于雷达跟踪空中飞行物,空对空、空对地的被动式跟踪;在自动驾驶中,它被应用于目标检测;交通管制领域它被应用在对车或人视频监控;它还用于机器人的全局定位。
2022-10-12 03:44:24
1176
原创 电力拖动自动控制系统 华南理工大学期末重点 阮毅 长篇思维导图
作者为华南理工大学自动化专业学生,以下为期末自己整理的思维导图,如有错误希望指出。中英文班通用,两班小有差异,建议中文班同学多结合教材复习。以及M法、T法、M/T法分别适用于高速、低速、都可。还有泵升(pumping)电压的定义。如有错误还望指正...
2022-06-17 17:19:09
1898
1
原创 计算机控制技术 华南理工大学期末重点 温钢云 长篇思维导图
作者为华南理工大学自动化专业学生,以下为期末整理的思维导图,蓝色标记为重点,如有错误希望指出。写的有些乱,请见谅hhh。如有错误请指出,还望见谅
2022-06-17 16:50:56
1428
4
原创 过程控制系统与仪表 华南理工大学期末重点 王再英(第二版) 长篇思维导图
作者为华南理工大学自动化专业学生,以下为期末整理的思维导图,如有错误希望指出。只需要会推导多容过程即可,案例见书上,要注意串联多容过程!期末题还是挺简单的,多做做往年题就知道了,第一章和第四章简单考考,第七章是重点,框图和系统传递函数图最好掌握。...
2022-06-17 16:36:48
2264
6
原创 GMM高斯混合模型
阅读背景差分算法相关文献碰到了这个模型,比较生疏,故此学习。一、基本概念如图所示,横轴上的数据集的密度函数可以视为两个高斯分布的叠加。从几何角度看,可以将其视为多个高斯分布叠加的加权平均。p(x)=∑k=1KαkN()p(x)=\sum_{k=1}^K \alpha_k N()p(x)=k=1∑KαkN()
2022-04-22 10:47:43
298
原创 计量经济学 学习笔记(长篇 未完成)
文章目录前言一、基本模型1、一元线性回归模型2、多元线性回归模型3、可线性化的非线性模型二、数据特征1、处理异方差2、自相关3、多重共线性4、虚拟变量的应用5、F,LR,Wald,JB检验三、面板数据类型1、混合模型2、固定效应模型3、随机效应模型四、其他总结前言一、基本模型1、一元线性回归模型2、多元线性回归模型3、可线性化的非线性模型二、数据特征1、处理异方差2、自相关3、多重共线性4、虚拟变量的应用5、F,LR,Wald,JB检验三、面板数据类型1、混合模型2、固定效应
2022-03-12 12:48:07
2101
原创 HMM隐马尔科夫模型及MATLAB实现
隐马尔科夫模型文章目录隐马尔科夫模型前言一、定义二、三个基本问题1、观测序列概率2、模型参数学习3、预测(解码)问题总结前言隐马尔科夫模型(HMM)是在马尔科夫链上的一个扩展,属于机器学习,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析一、定义隐状态集合:Q={q1,q2,…,qN}可观测态集合:V={v1,v2,…,vN}状态序列:I={i1,i2,…,iN}观察态序列:O={o1,o2,…,oN}状态转
2022-02-26 15:38:09
7536
6
原创 华南理工大学 电力电子技术(王兆安) 期末复习笔记3 第五章第六章第七章
电力电子技术(王兆安)笔者是华南理工自动化专业大三在读学生,以下内容是根据我们期末考试考纲总结文章目录电力电子技术(王兆安)考纲概览笔记内容其他期导航考纲概览红色部分为非考纲内容以及我自己做的思维导图,重点汇总:本笔记将按照第二章&第九章、第三章、第四章、第五章、第六章、第七章的顺序进行提示:以下是本篇文章正文内容,下面案例可供参考笔记内容其他期导航...
2021-12-19 22:55:04
2614
原创 华南理工大学 电力电子技术(王兆安) 期末复习笔记2 第三章第四章
电力电子技术(王兆安)笔者是华南理工自动化专业大三在读学生,以下内容是根据我们期末考试考纲总结文章目录电力电子技术(王兆安)考纲概览按目录看考纲重点の思维导图笔记内容其他期导航考纲概览按目录看考纲红色部分为非考纲内容重点の思维导图以及我自己做的思维导图,重点汇总:本笔记将按照第二章&第九章、第三章、第四章、第五章、第六章、第七章的顺序进行提示:以下是本篇文章正文内容,下面案例可供参考笔记内容其他期导航...
2021-12-19 22:50:57
3508
原创 华南理工大学 电力电子技术(王兆安) 期末复习笔记1 第二章第九章
电力电子技术(王兆安)笔者是华南理工自动化专业大三在读学生,以下内容是根据我们期末考试考纲总结文章目录电力电子技术(王兆安)考纲概览按目录看考纲重点の思维导图笔记内容第二章一、不可控器件 电力二极管二、半控型器件 晶闸管(SCR)三、晶闸管二极管通用公式四、全控型器件五、其他第九章一、归类二、电气隔离手段三、典型驱动四、过压过流五、缓冲电路(9-14)六、串并联和不均压(动、静)其他期导航考纲概览按目录看考纲红色部分为非考纲内容重点の思维导图以及我自己做的思维导图,重点汇总:
2021-12-19 22:40:57
6205
原创 吴恩达深度学习笔记【2】
神经网络文章目录神经网络前言一、一些基础的numpy语法二、神经网络1、原理2、代码MATLAB版本:python版本:3、激活函数tanh函数Relu函数Leaky ReLU函数(PReLU)ELU (Exponential Linear Units) 函数总结前言学习的第二天一、一些基础的numpy语法import numpy as npa=np.array([1,2,3,4])#生成数组print(a)import timea=np.random.rand(100000
2021-11-28 23:36:30
1156
原创 吴恩达深度学习笔记【1】
监督学习简介文章目录监督学习简介前言一、监督学习常见应用二、基础知识1.数据类型2.学习次序3.常用符号4.二分分类(logistics)5.梯度下降法6.导数和流程图(略)7.logistics中的梯度下降7.向量化的必要性8.向量化的logistics总结前言学习的第一天一、监督学习常见应用输入输出应用类别房子特色房价房地产Stand NN广告广告点击网络广告Stand NN图像目标(1,……,n)图像目标CNN音频转文字
2021-11-28 01:25:03
1133
原创 [突发奇想的JS小案例] 2 重力模拟
文章目录前言一、效果展示二、代码与思路1.代码2.思路后续展望前言作者是一个JavaScript新手,偶尔想到一些有趣的小案例分享一、效果展示可以利用鼠标拖动舞台中的方块,松开鼠标时方块会按照二次方的速度(简单的物理公式x=x0-1/2×gt2)降落二、代码与思路1.代码代码如下:<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <meta
2021-11-16 16:18:54
1002
原创 [突发奇想的JS小案例] 1 捉苍蝇
文章目录前言一、效果展示二、代码与思路1.代码2.思路后续展望前言作者是一个JavaScript新手,偶尔想到一些有趣的小案例分享一、效果展示这个小方块很像苍蝇,每当靠近就快速飞走……不依靠苍蝇拍的话很难捉住二、代码与思路1.代码代码如下:<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Com
2021-11-15 18:06:54
3971
原创 利用JS实现粘性定位
文章目录前言一、CSS布局二、JS实现1.获取元素2.获取参数3.事件总结前言效果如下图(橙色小方块)一、CSS布局CSS部分的内容很简单,不必详谈。 <style> * { margin: 0; padding: 0; } .w { /* position: absolute; */ width: 80%;
2021-10-31 16:35:28
1885
1
原创 HTML CSS JS简易画板(含知识点温习)
文章目录前言一、HTML部分1、代码2、温习二、CSS部分1、代码2、温习三、JavaScript部分1、代码2、温习总结前言笔者目前只学习到BOM的内容,因此所用代码都只限于HTML5、CSS、JS的部分效果图:高情商:蜡笔质感低情商:画笔不连续(我也不清楚怎么改善,还请大佬指教)一、HTML部分1、代码主要指body<body> <div id="content"> <!-- 用于选画笔颜色 --> <l
2021-10-24 17:45:29
631
2
原创 粒子群算法(3)粒子群算法的其他应用(待完善)
粒子群算法(2)求解方程组思路案例vpasolve法fsolve法可用format long g显示更多的小数位置。@my_fun:粒子群算法@Obj_fun结论:(1) vpasolve函数和fsolve函数需要给定一个比较好的初始值,如果初始值没给好则求不出结果;(2)粒子群算法不需要给初始值,只需要给一个搜索的范围。由于算法本身具有随机性, 因此可能需要多次运行才能得到一个较好的结果。多元函数拟合案例其他方法绘制相对误差图...
2021-08-29 23:36:33
257
原创 粒子群算法(2)
上一期:粒子群算法(1)线性递减惯性权重惯性权重w体现的是粒子继承先前的速度的能力,Shi,Y最先将惯性权重w引入到粒子群算法中,并分析指出一个较大的惯性权值有利于全局搜索,而一个较小的权值则更利于局部搜索。为了更好地平衡算法的全局搜索以及局部搜索能力,Shi,Y提出了线性递减惯性权重LDIW(Linear Decreasing Inertia Weight),公式如下:...
2021-08-29 18:16:49
2388
7
dijkstra MATLAB代码 注释版 免积分
2023-05-02
题目总结 华南理工大学 单片机 自动化期末考试题
2022-11-28
合集 华南理工大学 过控控制工程、计算机控制技术、运动控制系统(过控、计控、运控) 自动化期末考试题
2022-11-28
合集 华南理工大学 微型计算机原理(微机) 自动化期末考试题
2022-11-28
设备管理器中shrew soft virtual adapter是做什么的?
2022-05-09
请问unity有什么好教程?(使用JavaScript)
2021-11-17
请问这个软件是什么,可以卸载吗?
2021-07-26
请问Quartus II已有pof文件,如何逆向转换成bdf?
2021-06-01
TA创建的收藏夹 TA关注的收藏夹
TA关注的人