【POJ 1226】Substrings【后缀数组】

题目:给出若干的字符串,求一个最长的串,使得这个串或者这个串的反转出现在这个若干个串中。求出这个串的长度。

题解:根据题意,我们可以这样考虑问题,将给出的字符串,我们都求一个反转。然后将反转的串和原串连接在一起。这样就相当于求一个最长的串,使得它出现在每一个我们构造的串中。

这样可以转化成后缀数组的问题,我们将每一个串以及它的反转用一个不出现的字符连接起来,然后把所有这样的串再用一个不出现的字符连接起来。这里注意每一个连接符都是要求不相同的。然后对这个大串跑一次后缀数组,我们记录每一个字符是属于第几个串的。接下来就是二分答案,通过二分串的长度len,我们对height[i]进行分组,对于每一组中的height都要大于等于len,然后计算这些height所代表的两个后缀是否是出现在开始给定的若干的字符串中,若都出现,则说明存在长度为len的字串满足要求。

#include <cstdio>
#include <string.h>
#define maxn 202010
#include <iostream>
using namespace std;
int wwa[maxn],wwb[maxn],wwv[maxn],wws[maxn];
//比较函数
int cmp(int *r,int a,int b,int l){
    return r[a]==r[b]&&r[a+l]==r[b+l];
}
//倍增算法
void da(int *r,int *sufix,int n,int m){
    int i,j,p,*x=wwa,*y=wwb,*t;
    for(i=0;i<m;i++) wws[i]=0;
    for(i=0;i<n;i++) wws[x[i]=r[i]]++;
    for(i=1;i<m;i++) wws[i]+=wws[i-1];
    for(i=n-1;i>=0;i--) sufix[--wws[x[i]]]=i;
    for(j=1,p=1;p<n;j*=2,m=p)
    {
        for(p=0,i=n-j;i<n;i++) y[p++]=i;
      for(i=0;i<n;i++) if(sufix[i]>=j) y[p++]=sufix[i]-j;
        for(i=0;i<n;i++) wwv[i]=x[y[i]];
        for(i=0;i<m;i++) wws[i]=0;
        for(i=0;i<n;i++) wws[wwv[i]]++;
        for(i=1;i<m;i++) wws[i]+=wws[i-1];
        for(i=n-1;i>=0;i--) sufix[--wws[wwv[i]]]=y[i];
       for(t=x,x=y,y=t,p=1,x[sufix[0]]=0,i=1;i<n;i++)
       x[sufix[i]]=cmp(y,sufix[i-1],sufix[i],j)?p-1:p++;
    }
    return;
}
//保存初始字符串
int r[maxn];
//排名数组,公共长度数组,后缀数组
int rank[maxn],height[maxn],sufix[maxn];
//求height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,
//也就是排名相邻的两个后缀的最长公共前缀
//有height[i]>=h[i-1]-1
void calheight(int *r,int *sufix,int n){
    int i,j,k=0;//记录排名
    for(i=0;i<=n;i++) rank[sufix[i]]=i;
    //记录排名相邻的后缀的公共子串长度
    for(i=0;i<n;height[rank[i++]]=k)
    for(k?k--:0,j=sufix[rank[i]-1];r[i+k]==r[j+k];k++);
    return;
}

int belong[maxn], n;
char w[120];
bool vis[maxn];

bool ch(int mid, int len) {
    int i, j, tot = 0;
    memset(vis, false, sizeof(vis));
    for (i = 2;i <= len;i++) {
        if (height[i] < mid) {
            tot = 0;
            memset(vis, false, sizeof(vis));
        }else {
            int id = belong[sufix[i]], idd = belong[sufix[i-1]];
            if (!vis[id]) {
                vis[id] = true;
                tot++;
            }
            if (!vis[idd]) {
                vis[idd] = true;
                tot++;
            }
            if (tot == n) return true;
        }
    }
    return false;
}

int main() {
    int T, i, j;
    scanf("%d", &T);
    while (T--) {
        scanf("%d", &n);
        int len, m = 0, sp = 140;
        for (i = 1;i <= n;i++) {
            scanf("%s", w);
            len = strlen(w);
            for (j = 0;j < len;j++) {
                belong[m] = i;
                r[m++] = w[j];
            }
            belong[m] = sp, r[m++] = sp++;
            for (j = len-1;j >= 0;j--) {
                belong[m] = i, r[m++] = w[j];
            }
            belong[m] = sp, r[m++] = sp++;
        }
        r[m] = 0;
        da(r, sufix, m+1, sp);
        calheight(r, sufix, m);
        //puts("haha");
        int f = 0, r = len, mid, ans = 0;
        while (f <= r) {
            mid = f+r>>1;
            if (ch(mid, m)) f = mid+1, ans = mid;
            else r = mid-1;
        }
        printf("%d\n", ans);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值