题目:给出若干的字符串,求一个最长的串,使得这个串或者这个串的反转出现在这个若干个串中。求出这个串的长度。
题解:根据题意,我们可以这样考虑问题,将给出的字符串,我们都求一个反转。然后将反转的串和原串连接在一起。这样就相当于求一个最长的串,使得它出现在每一个我们构造的串中。
这样可以转化成后缀数组的问题,我们将每一个串以及它的反转用一个不出现的字符连接起来,然后把所有这样的串再用一个不出现的字符连接起来。这里注意每一个连接符都是要求不相同的。然后对这个大串跑一次后缀数组,我们记录每一个字符是属于第几个串的。接下来就是二分答案,通过二分串的长度len,我们对height[i]进行分组,对于每一组中的height都要大于等于len,然后计算这些height所代表的两个后缀是否是出现在开始给定的若干的字符串中,若都出现,则说明存在长度为len的字串满足要求。
#include <cstdio>
#include <string.h>
#define maxn 202010
#include <iostream>
using namespace std;
int wwa[maxn],wwb[maxn],wwv[maxn],wws[maxn];
//比较函数
int cmp(int *r,int a,int b,int l){
return r[a]==r[b]&&r[a+l]==r[b+l];
}
//倍增算法
void da(int *r,int *sufix,int n,int m){
int i,j,p,*x=wwa,*y=wwb,*t;
for(i=0;i<m;i++) wws[i]=0;
for(i=0;i<n;i++) wws[x[i]=r[i]]++;
for(i=1;i<m;i++) wws[i]+=wws[i-1];
for(i=n-1;i>=0;i--) sufix[--wws[x[i]]]=i;
for(j=1,p=1;p<n;j*=2,m=p)
{
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sufix[i]>=j) y[p++]=sufix[i]-j;
for(i=0;i<n;i++) wwv[i]=x[y[i]];
for(i=0;i<m;i++) wws[i]=0;
for(i=0;i<n;i++) wws[wwv[i]]++;
for(i=1;i<m;i++) wws[i]+=wws[i-1];
for(i=n-1;i>=0;i--) sufix[--wws[wwv[i]]]=y[i];
for(t=x,x=y,y=t,p=1,x[sufix[0]]=0,i=1;i<n;i++)
x[sufix[i]]=cmp(y,sufix[i-1],sufix[i],j)?p-1:p++;
}
return;
}
//保存初始字符串
int r[maxn];
//排名数组,公共长度数组,后缀数组
int rank[maxn],height[maxn],sufix[maxn];
//求height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,
//也就是排名相邻的两个后缀的最长公共前缀
//有height[i]>=h[i-1]-1
void calheight(int *r,int *sufix,int n){
int i,j,k=0;//记录排名
for(i=0;i<=n;i++) rank[sufix[i]]=i;
//记录排名相邻的后缀的公共子串长度
for(i=0;i<n;height[rank[i++]]=k)
for(k?k--:0,j=sufix[rank[i]-1];r[i+k]==r[j+k];k++);
return;
}
int belong[maxn], n;
char w[120];
bool vis[maxn];
bool ch(int mid, int len) {
int i, j, tot = 0;
memset(vis, false, sizeof(vis));
for (i = 2;i <= len;i++) {
if (height[i] < mid) {
tot = 0;
memset(vis, false, sizeof(vis));
}else {
int id = belong[sufix[i]], idd = belong[sufix[i-1]];
if (!vis[id]) {
vis[id] = true;
tot++;
}
if (!vis[idd]) {
vis[idd] = true;
tot++;
}
if (tot == n) return true;
}
}
return false;
}
int main() {
int T, i, j;
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
int len, m = 0, sp = 140;
for (i = 1;i <= n;i++) {
scanf("%s", w);
len = strlen(w);
for (j = 0;j < len;j++) {
belong[m] = i;
r[m++] = w[j];
}
belong[m] = sp, r[m++] = sp++;
for (j = len-1;j >= 0;j--) {
belong[m] = i, r[m++] = w[j];
}
belong[m] = sp, r[m++] = sp++;
}
r[m] = 0;
da(r, sufix, m+1, sp);
calheight(r, sufix, m);
//puts("haha");
int f = 0, r = len, mid, ans = 0;
while (f <= r) {
mid = f+r>>1;
if (ch(mid, m)) f = mid+1, ans = mid;
else r = mid-1;
}
printf("%d\n", ans);
}
}