图形学初识--纹理采样和Wrap方式

前言

上节讲述了双线性插值算法,虽然也有提到主要应用的点就是纹理采样,但是对于这一块有些小小白可能还不了解,所以这一节补充一下纹理采样的内容!

请叫我贴心航火火!梦想为小白而生!

正文

1、为什么需要纹理采样?

想象一个场景: 如果有这么一个需求,需要在屏幕的一块400x400目标区域显示一张图片,正好这张图片的尺寸也是400x400像素,怎么做?

答: 啥都不需要做,是的,根本不需要做什么处理,直接一一对应像素显示即可!

但是,实际情况中,往往几乎不可能这么巧合的一一对应,要么纹理图片过大,要么纹理图片过小,没法一一对应,怎么办呢?

答: 通过引入一种机制,进行等比例对应,这就是uv坐标的由来,它本质上就表示百分比,一般地,uv坐标的标准取值范围是:0.0 - 1.0。

举个纹理图片过小的例子,如下图: 当我们需要绘制 400x400 窗口区域图片纹理大小是 200x200,如果要在窗口 (20, 20) 位置绘制,那么我们就相当于取纹理图片的 ( 20 / 400 , 20 / 400 ) = ( 0.05 , 0.05 ) (20 / 400 , 20 / 400) = (0.05, 0.05) (20/400,20/400)=(0.05,0.05) 比例位置的像素数据,也就是 ( 0.05 ∗ 200 , 0.05 ∗ 200 ) = ( 10 , 10 ) (0.05 * 200,0.05 * 200) = (10, 10) (0.052000.05200)=(10,10) 位置的数据!这里的 ( 0.05 , 0.05 ) (0.05, 0.05) (0.05,0.05)​ 其实就是uv坐标!

在这里插入图片描述

这里引申一下,由于上述举的例子是绘制区域大,纹理图片小。所以自然而然会存在多个绘制区域对应一个纹理像素位置的情况。这时候就应用到上节的内容。是直接采用最邻近的采样方式,还是双线性插值的方式,来缓解像素化的情况,取决于自身的需求!

2、什么是纹理采样?

在屏幕上某一像素绘制时,根据像素所在位置,去图片上寻找对应像素值的过程,这个过程就是纹理采样!如下图所示:

在这里插入图片描述

3、如何进行纹理采样?

其实需要采样的情形无非就是两种情况,上面也说了!纹理太大或太大。这里咱们只说纹理太小的情况,需要用到上一节的双线性插值的知识。

纹理太大的时,解决的思路无非就是让纹理变小,变到一个最适合绘制窗口的大小。如果想要适应各种绘制窗口大小,就需要利用MipMap的知识,后面章节有空的话,会把这部分给补上哦,童鞋们!

(1)假设绘制区域为矩形

需要在一个分辨率为 screen_width X screen_height 的矩形窗口区域绘制一张图片,这张图片分辨率为picture_width X picture_height,假设绘制区域左下角的uv坐标为 ( u x 0 , u y 0 ) (u_{x0}, u_{y0}) (ux0,uy0),右上角的uv坐标为 ( u x 1 , u y 1 ) (u_{x1}, u_{y1}) (ux1,uy1) ,且满足 0 = < u x 0 、 u x 1 、 u y 0 、 u y 1 < = 1.0 0 =< u_{x0}、u_{x1}、u_{y0}、u_{y1} <= 1.0 0=<ux0ux1uy0uy1<=1.0 ,则对于任何绘制区域坐标为 ( x , y ) (x,y) (x,y)​ 的uv坐标为
u x = x s c r e e n _ w i d t h ∗ u x 1 + ( 1 − x s c r e e n _ w i d t h ) ∗ u x 0 u y = y s c r e e n _ h e i g h t ∗ u y 1 + ( 1 − y s c r e e n _ h e i g h t ) ∗ u y 1 u_x = \frac{x}{screen\_width} *u_{x1} + (1 - \frac{x}{screen\_width}) * u_{x0}\\ u_y = \frac{y}{screen\_height} *u_{y1} + (1 - \frac{y}{screen\_height}) * u_{y1}\\ ux=screen_widthxux1+(1screen_widthx)ux0uy=screen_heightyuy1+(1screen_heighty)uy1
既然已经有了绘制区域每一个位置的uv坐标,咱么只需要根据uv坐标,去纹理图片进行采样像素值即可,至于采取何种采样方法,可以参考上一片文章,既可以采用最邻近取整的方式,也可以采取双线性插值的方式!这里根据用户需求,自行决定,不多赘述!

(2)假设绘制区域为三角形

给定三个顶点 p 1 = ( x 1 , y 1 ) 、 p 2 = ( x 2 , y 2 ) 、 p 3 = ( x 3 , y 3 ) p1 = (x_1,y_1)、p2 = (x_2,y_2)、p3 = (x_3,y_3) p1=(x1,y1)p2=(x2,y2)p3=(x3,y3) 并且给定三个顶点的uv坐标分别为 u 1 = ( u x 1 , u y 1 ) , u 2 = ( u x 2 , u y 2 ) , u 3 = ( u x 3 , u y 3 ) u_1 = (u_{x1},u_{y1}),u_2 = (u_{x2},u_{y2}),u_3 = (u_{x3},u_{y3}) u1=(ux1,uy1),u2=(ux2,uy2),u3=(ux3,uy3),如何得知三角形内每一个顶点 p ( x , y ) p(x,y) p(x,y) 的uv坐标呢?

这时候重心坐标插值公式,又派上用上了,之前的章节已经介绍过,就不过多阐释了!

这时候 每一个三角形内的顶点 p ( x , y ) p(x,y) p(x,y) 的uv坐标 u p = α u 1 + β u 2 + γ u 3 u_p = \alpha u_1 + \beta u_2 +\gamma u_3 up=αu1+βu2+γu3 ,三个系数根据重心坐标公式即可算得!这时候同样,根据uv坐标去纹理图片进行采样像素值即可!

简单给个参考图:

在这里插入图片描述

4、什么是纹理的Wrap方式?

虽然标准规定的uv坐标范围为: ( 0.0 , 1.0 ) (0.0, 1.0) (0.0,1.0) ,但是如果越界了,对应的uv坐标的采样值如何取呢?这个问题的答案就是纹理的Wrap属性!

5、有哪些纹理的Wrap方式?

常见的Wrap方式有四种:

  • Repeat
  • Mirror_Repeat
  • Clamp_To_Edge
  • Clamp_To_Border

这里分别简单介绍并给出示例图:

(1)Repeat

超出部分,不断循环重复

在这里插入图片描述

(2)Mirror_Repeat

超出部分,不断循环镜像重复

在这里插入图片描述

(3)Clamp_To_Edge

纹理坐标会被约束在0到1之间,超出的部分会重复纹理坐标的边缘,产生一种边缘被拉伸的效果

在这里插入图片描述

(4)Clamp_To_Border

超出的坐标为用户指定的边缘颜色

在这里插入图片描述

6、如何实现纹理的Wrap方式?

上述的第(3)和第(4)很好理解,咱们就讨论下第(1)种和第(2)种的计算方式吧!

(1)Repeat

计算公式:
记 f ( x ) 函数表示取浮点数 x 的小数部分 , 则坐标 ( u x , u y ) 的最终坐标为 u x = f (   f ( u x ) + 1   ) u y = f (   f ( u y ) + 1   ) 记f(x)函数表示取浮点数x的小数部分,则坐标(u_x, u_y)的最终坐标为\\ u_x = f(\ f(u_x) + 1\ )\\ u_y = f(\ f(u_y) + 1\ ) f(x)函数表示取浮点数x的小数部分,则坐标(ux,uy)的最终坐标为ux=f( f(ux)+1 )uy=f( f(uy)+1 )

举例佐证:

  • ( 1.2 , 2.2 ) = > (   f ( 0.2 + 1 ) , f ( 0.2 + 1 )   ) = > ( 0.2 , 0.2 ) (1.2, 2.2) => (\ f(0.2 + 1),f(0.2 + 1)\ ) => (0.2, 0.2) (1.2,2.2)=>( f(0.2+1),f(0.2+1) )=>(0.2,0.2) ok

  • ( 0.3 , 0.8 ) = > (   f ( 0.3 + 1 ) , f ( 0.8 + 1 )   ) = > ( 0.3 , 0.8 ) (0.3, 0.8) => (\ f(0.3 + 1),f(0.8 + 1)\ ) => (0.3, 0.8) (0.3,0.8)=>( f(0.3+1),f(0.8+1) )=>(0.3,0.8) ok

  • ( − 0.5 , − 2.2 ) = > (   f ( − 0.5 + 1 ) , f ( − 0.2 + 1 )   ) = > ( 0.5 , 0.8 ) (-0.5, -2.2) => (\ f(-0.5 + 1),f(-0.2 + 1)\ ) => (0.5, 0.8) (0.5,2.2)=>( f(0.5+1),f(0.2+1) )=>(0.5,0.8) ok

(2)Mirror_Repeat

计算公式:
记 f ( x ) 函数表示取浮点数 x 的小数部分 , 则坐标 ( u x , u y ) 的最终坐标为 u x = 1 − f (   f ( u x ) + 1   ) u y = 1 − f (   f ( u y ) + 1   ) 记f(x)函数表示取浮点数x的小数部分,则坐标(u_x, u_y)的最终坐标为\\ u_x = 1 - f(\ f(u_x) + 1\ )\\ u_y = 1 - f(\ f(u_y) + 1\ ) f(x)函数表示取浮点数x的小数部分,则坐标(ux,uy)的最终坐标为ux=1f( f(ux)+1 )uy=1f( f(uy)+1 )

举例佐证:

  • ( 1.2 , 2.2 ) = > (   1 − f ( 0.2 + 1 ) , 1 − f ( 0.2 + 1 )   ) = > ( 1 − 0.2 , 1 − 0.2 ) = > ( 0.8 , 0.8 ) (1.2, 2.2) => (\ 1 - f(0.2 + 1),1 - f(0.2 + 1)\ ) => (1 - 0.2, 1 - 0.2) => (0.8,0.8) (1.2,2.2)=>( 1f(0.2+1),1f(0.2+1) )=>(10.2,10.2)=>(0.8,0.8) ok
  • ( 0.3 , 0.8 ) = > (   1 − f ( 0.3 + 1 ) , 1 − f ( 0.8 + 1 )   ) = > ( 1 − 0.3 , 1 − 0.8 ) = > ( 0.7 , 0.2 ) (0.3, 0.8) => (\ 1 - f(0.3 + 1),1 - f(0.8 + 1)\ ) => (1 - 0.3, 1 - 0.8) => (0.7, 0.2) (0.3,0.8)=>( 1f(0.3+1),1f(0.8+1) )=>(10.3,10.8)=>(0.7,0.2) ok
  • ( − 0.5 , − 2.2 ) = > (   1 − f ( − 0.5 + 1 ) , 1 − f ( − 0.2 + 1 )   ) = > ( 1 − 0.5 , 1 − 0.8 ) = > ( 0.5 , 0.2 ) (-0.5, -2.2) => (\ 1 - f(-0.5 + 1),1 - f(-0.2 + 1)\ ) => (1 - 0.5, 1 - 0.8) => (0.5, 0.2) (0.5,2.2)=>( 1f(0.5+1),1f(0.2+1) )=>(10.5,10.8)=>(0.5,0.2) ok

结尾:喜欢的小伙伴可以点点关注+赞哦

希望对各位小伙伴能够有所帮助哦,永远在学习的道路上伴你而行, 我是航火火,火一般的男人!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值